

Technology Demonstration and Cost Analysis for PFAS Destruction in Biosolids

January 22, 2024

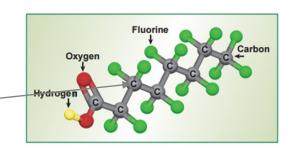
Agenda

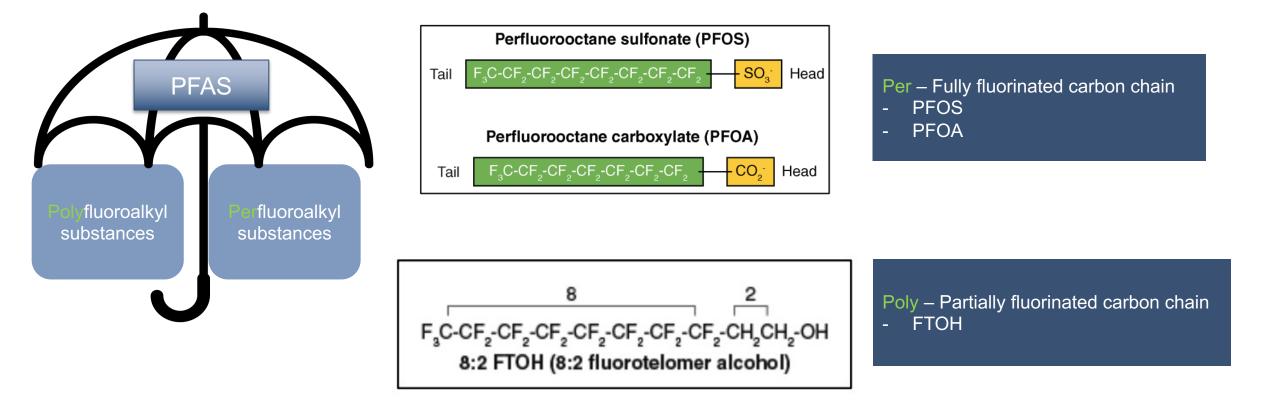
- PFAS (in) 101 (seconds)
- PFAS Regulations
- Destruction?
 - SCWO
 - Pyrolysis/ Gasification
- Demonstration AirSCWO-6 At Orange County Sanitation District, CA
- Understanding Pyrolysis for PFAS Removal (WRF #5107)
- Minnesota Pollution Control Agency (MPCA) Analysis of Alternatives for PFAS
- Conclusions

PFAS Removal?

Removal vs Transformation vs Destruction

Transformation: Fluorinated compound different than original compound (ie shorter chains) **Destruction:** All C-F bonds are broken


PFAS 101


The (expanding) world of PFAS compounds

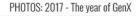
Over 8,000+ compounds (ECHA, 2020)

Hazen

PFAS: At least one Fluorine – Carbon bond

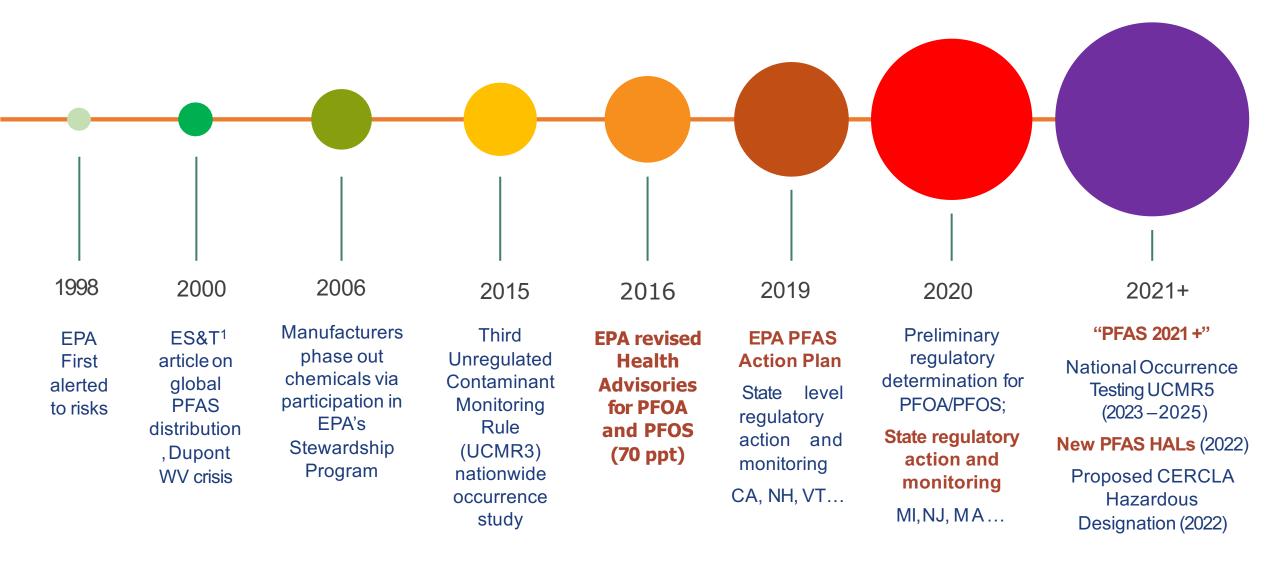
C-F bond is one of the strongest known covalent bonds, and the multiple C-F bonds in PFASs provide their chemical and thermal stability

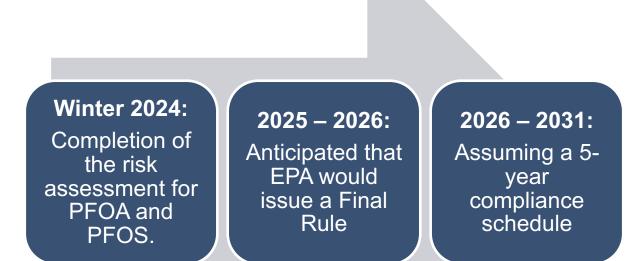
PFAS Is Everywhere


Commercial and Consumer Products Containing PFAS:

- paper and packaging
- clothing and carpets
- outdoor textiles and sporting equipment
- ski and snowboard waxes
- non-stick cookware
- cleaning agents and fabric softeners
- polishes and waxes, and latex paints
- pesticides and herbicides
- hydraulic fluids
- windshield wipers
- paints, varnishes, dyes, and inks
- adhesives
- medical products
- personal care products (for example, shampoo, hair conditioners, sunscreen, cosmetics, toothpaste, dental floss)

SUBSCRIBE & Q MENU *


A protester holds a sign up at the June 20 Wilmington City Council meeting


THE TRUTH HAS A MAN ON THE INSIDE DARK

PFAS Regulations

Roadmap of Actions Regarding PFAS

EPA PFAS Roadmap for Biosolids

The risk assessment will serve as the basis for determining whether regulation of PFOA and PFOS in biosolids is appropriate.

PFAS Strategic Roadmap: EPA's Commitments to Action 2021–2024

NY State Interim Strategy for the Control of PFAS Compounds (DMM7)

- Policy was approved Sept 20th, 2023
- Policy took effect on Oct 20th, 2023

Main takeaway:

Goal is to limit industrial PFAS contributors to WRRFs

Policy Details

Within 180 days of policy issuance, all permitted 361-2 and 361-3 facilities accepting biosolids must:

- Develop & submit sampling plan to DEC
- Sample each source (WRRF) and submit data to DEC (DEC may fund)
- Draft EPA Method 1633 required (must analyze all PFAS compounds provided by that method)

*DEC may require additional analyses using the SPLP (synthetic precipitation leaching procedure) and use those results in the determination.

	PFOA or PFOS in biosolids, dry weight (ug/kg or ppb)*	Action Required for Biosolids that are Recycled
	20 or less	No action required.
d)	20 – 50	Additional sampling required. DEC will take appropriate steps to restrict recycling after 1 year if PFOS or PFOA levels are not reduced to below 20 ppb or less.
S tic	50 or greater	DEC will take action to prohibit recycling until PFOS or PFOA concentration is below 20 ppb.

Massachusetts

SENATE DOCKET, NO. 1716 FILED ON: 1/19/2023

SENATE No. 2053

- A Joint Committee on State Administration and Regulatory Oversight gave a favorable report to S.2053
- Proposed act establishing a moratorium on the procurement of structures (ie incineration, pyrolysis, dryers(?)) or activities generating PFAS emissions.
- Not clear of impacts of upgrades/ rehabilitation projects

The Commonwealth of Massachusetts

PRESENTED BY:

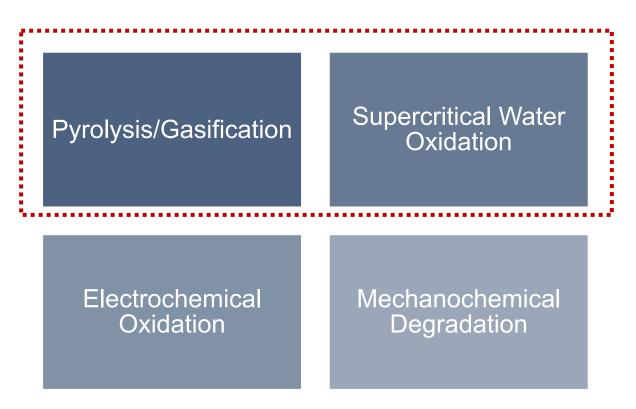
Marc R. Pacheco

To the Honorable Senate and House of Representatives of the Commonwealth of Massachusetts in General Court assembled:

The undersigned legislators and/or citizens respectfully petition for the adoption of the accompanying bill:

An Act establishing a moratorium on the procurement of structures or activities generating PFAS emissions.

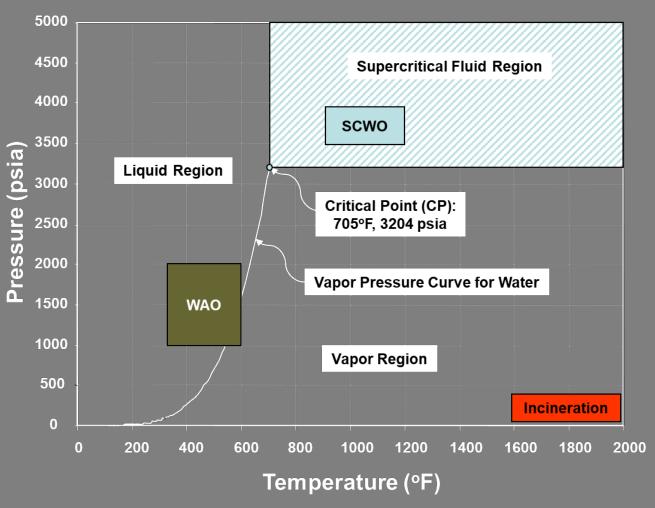
- 20 "Perfluoroalkyl and polyfluoroalkyl substances" or "PFAS" a class of fluorinated
- 21 organic chemicals containing at least 1 fully fluorinated carbon atom


Destruction?

Promising Technologies

EPA's PFAS Innovative Treatment Team (PITT)

- Assess current and emerging destruction methods being explored by EPA, universities, other research organizations, and industry.
- Explore the efficacy of methods, including consideration of potentially hazardous byproducts
- Evaluate methods' feasibility, performance, and costs to better understand potential solutions



https://www.epa.gov/chemical-research/pfas-innovative-treatment-team-pitt

SCWO Introduction

Supercritical Water Oxidation

Oxidation Technologies

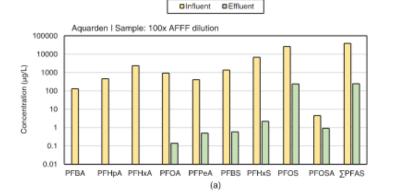
- A special phase of water with both liquid-like and gaslike properties
- As pressure increase, water temp increases beyond the boiling point
- Beyond critical point, organic matter rapidly dissolve and becomes simple molecules, oxygen is fully miscible, and salts are insoluble
- With air/O₂, organics are fully oxidized
- Peak temp in SCWO is not hot enough to produce NOx
- It is not a combustion technology by EPA!!!

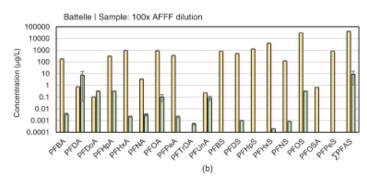
Technology Background

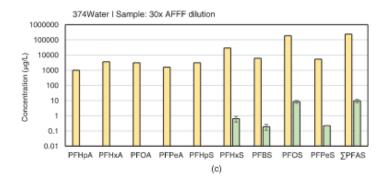
It is not new

Company (currently active ones in bold)	Year of Establishment or First Involvement	Licensees or Partners	
MODAR, Inc.	1980	Organo Corp.	
MODEC (Modell Environmental Corp.)	1986	Organo Corp., Hitachi Plant Engineering & Construction, Ltd., NGK Insulators, Ltd., NORAM Engineering and Constructors, Ltd.	
Oxidyne Corp.	1986	-	
EcoWaste Technologies, Inc.	1990	Chematur Engineering AB, Shinko Pantec (Kobelco)	
Abitibi-Price, Inc.	1991	General Atomics	
General Atomics (GA)	1991	Komatsu Ltd., Kurita Water Industries, Ltd.	
Turbosystems Engineering	1992	-	
Foster Wheeler Development Corp.	1993	Aerojet Gencorp Corp., Sandia National Laboratory	
SRI International	1993	Mitsubishi Heavy Industries, Ltd.	
KemShredder, Ltd	1993	-	
Hanwha Chemical	1994	-	
Chematur Engineering AB	1995	Johnson Matthey, WS Atkins, Stora-Enso, Feralco AB	
HydroProcessing, L.L.C.	1996	-	
Hydrothermale Oxydation Option (HOO)	2000	-	
SuperWater Solutions	2006	-	
SuperCritical Fluids International (SCFI)	2007	-	
Innoveox	2008	-	

- Rapid destruction of a wide variety of organic material
- Most hydrocarbons and oxygenated hydrocarbons are converted to $\rm CO_2$ and $\rm H_2O$

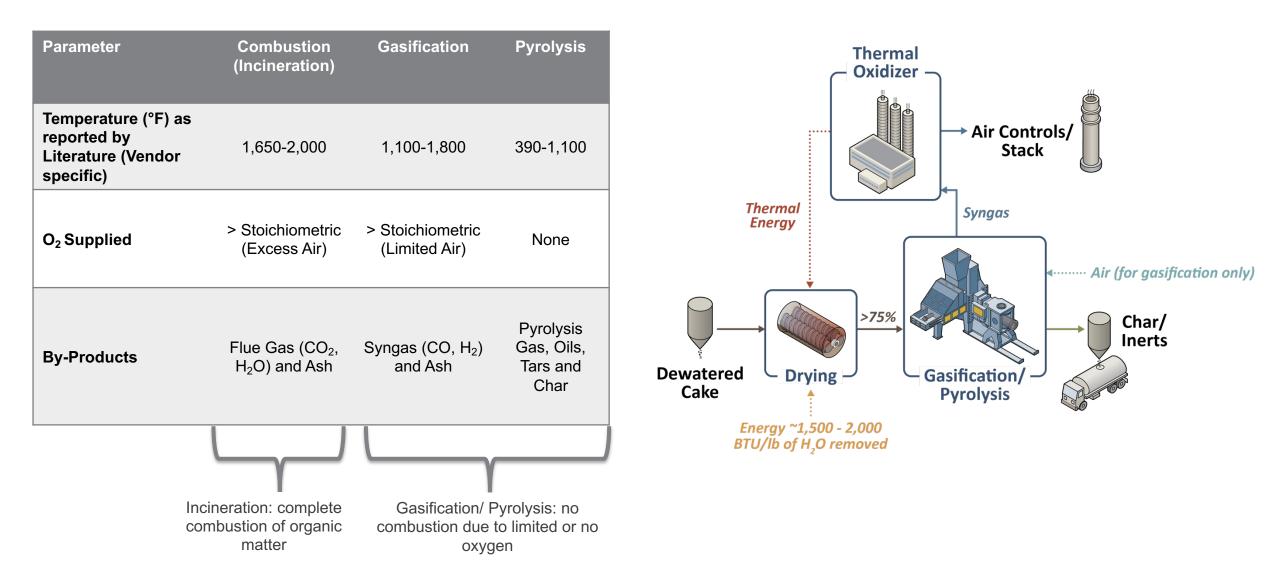

Marrone, 2013


SCWO and PFAS Removal


Recent Studies showed promising results

- Achieved greater than 99% destruction efficiency of ΣPFAS (also PFOS and PFOA) in the liquid phase
- The targeted analyses of the liquid-phase, showed positive results
- More rigorous examinations of the influent and effluent composition, including gas-phase products, are needed

Total PFAS	29.1 ppt	99.95%
PFOS	0.65	99.998%
PFHxS	0.28	99.994%
PFPeS	ND <0.29 ng/L	>99.98%
PFBS	ND <0.19 ng/L	>99.98%
PFTeA	0.30	ND in feed <3900 ng/L
PFUnA	ND <1.10 ng/L	>99.89%
PFDA	0.80	99.97%
PFNA	1.07	99.90%
PFOA	3.15	ND in feed <6200 ng/L
PFHpA	2.35	ND in feed <2100 ng/L
PFHxA	5.15	99.89%
PFPeA	5.10	ND in feed <5600 ng/L
PFBA	10.20	99.86%
SUBSTANCE	RESIDUAL ng/L (ppt)	REMOVAL %

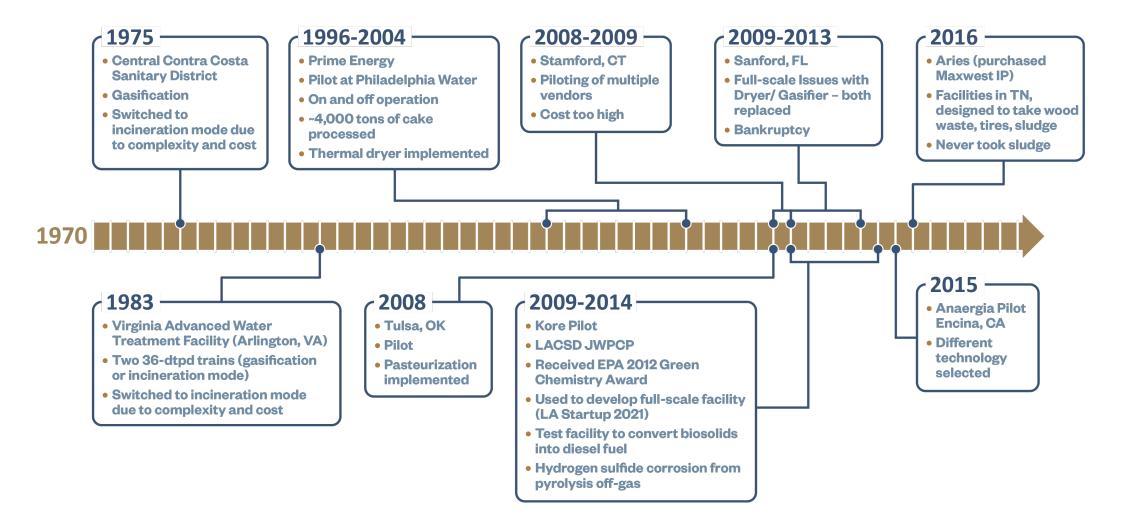


Kraus et al, J. Environ. Eng., 2022, 148(2)

Gasification/ Pyrolysis Introduction

Pyrolysis/Gasification

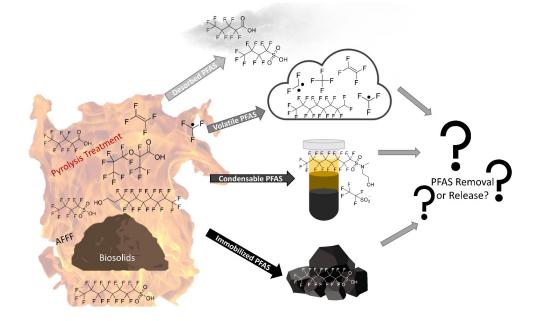
Non-Wastewater Gasification/ Pyrolysis in US/ Globally



Waste material includes:

- Agriculture wastes
- Biomass
- Forest residues
- Lignocellulosic
- Oils
- Organic residues
- Sugar and starch

Historical Perspective – Biosolids Pyrolysis/ Gasification


PFAS destruction

 Several data points showing no PFAS in biochar

Bioforcetech, Ecoremedy, LLC, Chartech

Is PFAS destroyed or going to the vapor phase?

- Chemours report
- Thoma et al, EPA 2022
- More research

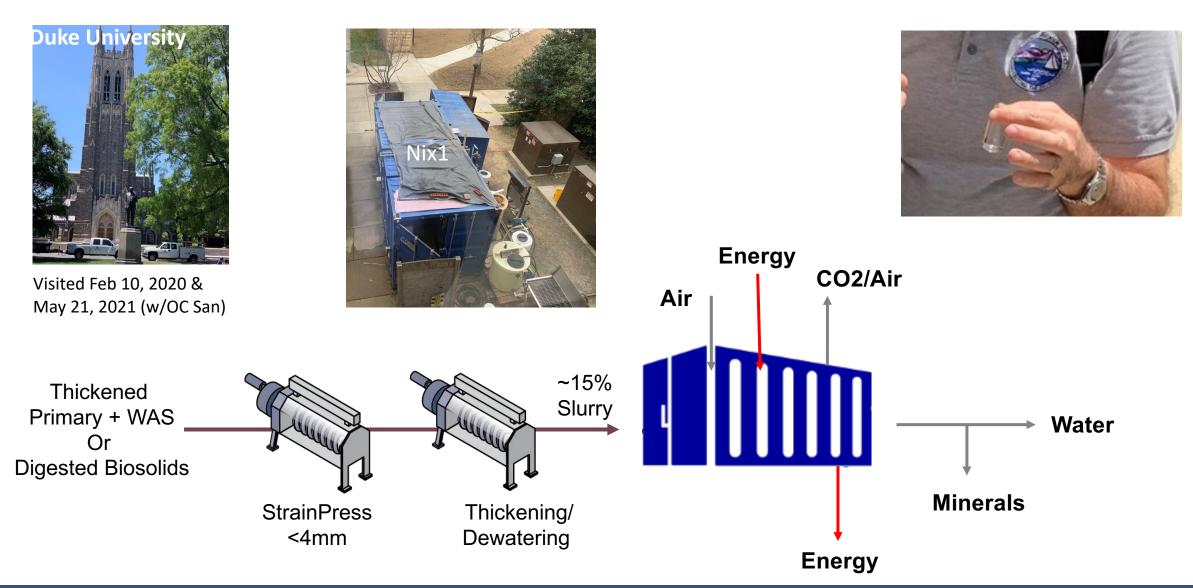
 Operating data:

 Input Material: Anaerobically digested Biosolids at 91% solid content

 Location: Silicon Valley Clean Water, Redwood City, California

 Pyrolysis Conditions: Temperature 600°C +/- 20°C (1,112°F +/- 68°F), Residence time ~20 Minutes

 Lab Info: Vista Analytical Laboratory, 1104 Windfield Way, El Dorado Hills, CA


	Dry Biosolids (ng/g)	Biochar (ng/g)
PFBA	7.03	ND
3:3 FTCA	ND	ND
PFPeA	5.94	ND
PFBS	2.3	ND
4:2 FTS	ND	ND
PFHxA	33.7	ND
PFPeS	ND	ND
HFPO-DA	ND	ND
5:3 FTCA	64.5	ND
PFHpA	7.45	ND
ADONA	ND	ND
PFHxS	ND	ND
6:2 FTS	ND	ND
PFOA	89.1	ND
PFHpS	ND	ND
7:3 FTCA	40	ND
PFNA	5.3	ND
PFOSA	ND	ND
PFOS	26.3	ND
9CI-PF30NS	ND	ND
PFDA	11.3	ND
8:2 FTS	5.68	ND
PFNS	ND	ND
MeFOSAA	23.5	ND
EIFOSAA	19.6	ND
PFUnA	3.39	ND
PFDS	ND	ND
11CI-PF30UdS	ND	ND
10:2 FTS	ND	ND
PFDoA	5.85	ND
MeFOSA	ND	ND
PFTrDA	ND	ND
PFTeDA	2.44	ND
EIFOSA	ND	ND
PFHxDA	ND	ND
PFODA	ND	ND
MeFOSE	17.1	ND
EIFOSE	ND	ND

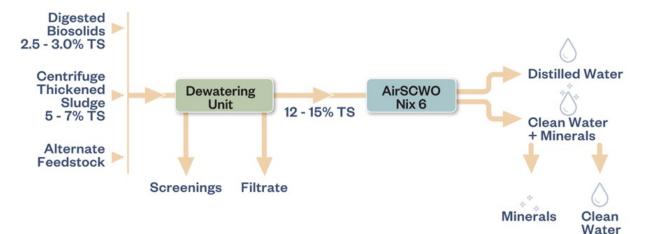
Supercritical Water Oxidation Demonstration Orange County Sanitation District

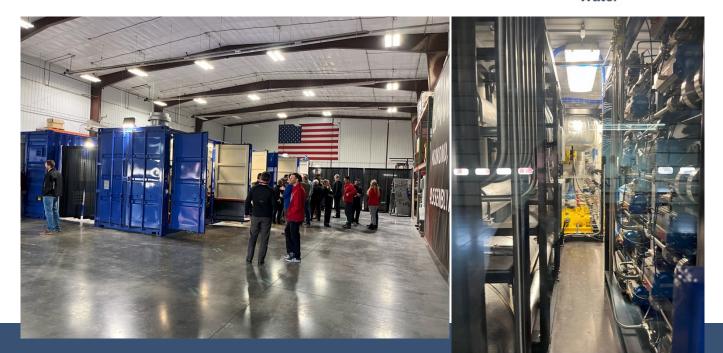
Super Critical Water Oxidation (SCWO, 374Water)

Since 2013, Funding form Bill & Melinda Gate Foundation

374Water AirSCWO PFD – continuous process

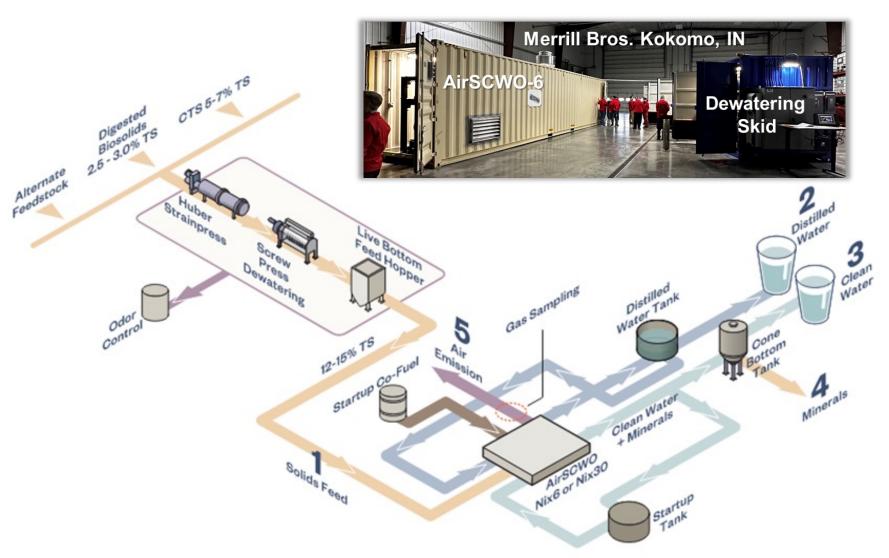
- No biosolids product at the end → Increase in biosolids beneficial use cost and scarcity of end use
- End products are resources
- Insignificant/low emission
- One of three technologies identified by EPA for destroys PFAS from biosolids


374Water AirSCWO-6 Demonstration at Orange County Sanitation District


OC San

- Plan for PFAS issues in the residuals
- Plan for future land application restrictions

Goals:


- Design/construct first AirSCWO-6 (6 wtpd system)
- Demonstrate continuously and cost competitively processing biosolids
- Recover resources in the form of energy, mineral nutrients, heat and reusable water
- Eliminate pharmaceuticals, PFAS, microplastics and antibiotic resistant bacteria
- Move to AirSCWO-30 (30 wet tons per day), if successful

AirSCWO-6 Demonstration Project Status

- Started January 2022
- Design complete for balance
 of demonstration units
- Contractor is selected and work in progress
- AQMD research permit submitted:
 - Air testing and sampling conducted at Duke in August 2022
- On-site in March of 2024



Advanced Thermal Processes: Pyrolysis/Gasification

WRF #5107 – Understanding pyrolysis for PFAS removal

- WRF Project Partners (WRF matches cash)
- Goals
 - Fate of PFAS in the pyrolysis process
 - Mass balances on metals and organics
 - Energy balance
 - Syngas quantity and quality
 - Life cycle cost comparison to other established processes

Commercial Status

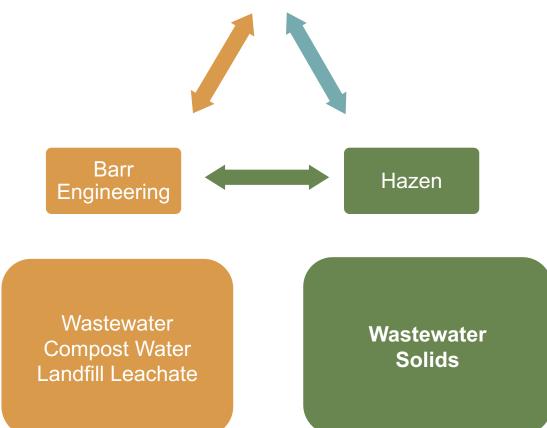
Company	Location	ΑΤΡ	Scale	Status	Biosolids Capacity (WT/d)
Ecoremedy	Derry Township, PA	Gasification	Full-Scale	Construction expected April 2024 with commissioning Q4 2024	70
	Edmonds, WA	Gasification	Full-Scale	Operating since August 2023	50
Northeastern Biochar Solutions	Moreau, NY	Pyrolysis	Full-Scale	Open to Comment by DEC, no construction to date.	
	Redwood City, CA	Pyrolysis	Full-Scale	Operational Since 2017. Back online March 2024.	8.3
	Ephrata, PA	Pyrolysis	Full-Scale	Almost Finalized (1/17/2024 update). Commission and start-up expected to begin March 2024.	11
BioForceTech	Redding, CA	Pyrolysis	Full-Scale	Almost Finalized (1/17/2024 update). Commission and start-up expected to begin March 2024.	8.3
	Yelm, WA	Pyrolysis	Full-Scale	Equiment almost ready to be shipped to Client's location (1/17/2024 update).	2.7
	Scappoose, OR	Pyrolysis	Full-Scale	Equiment almost ready to be shipped to Client's location (1/17/2024 update).	2.7
	Brentwood, CA	Pyrolysis	Full-Scale	Start-up and commissioning expected in 2025.	20-22
Earthcare	Bethel, PA	Gasification	Full-Scale	Near Complete. Early February 2024 Expected.	190
Anaergia	Rialto, CA	Pyrolysis	Full-Scale	Expected to start commissioning January 2024. Operations currently delayed while Rialto focuses on brining up Anaerobic Digestion.	300
CHAR	Synagro	Pyrolysis	Full-Scale	Expected to be operational by end of 2025.	35 (8 DTPD)
Technologies	Thorold, ON	Pyrolysis	Demonstration	Pilot is operational.	27 (6 DTPD)
Heartland Water Technology Murfreesboro, TN F		Plasma Gasification	Demonstration	Operational	4 – 6 DTPD

MN Pollution Control Agency Analyzing Alternatives for PFAS Removal

Project overview

Evaluation of Current Alternatives for PFAS Removal and Destruction from Municipal Wastewater, Biosolids, Landfill Leachate, and Compost Contact Water

Prepared for:

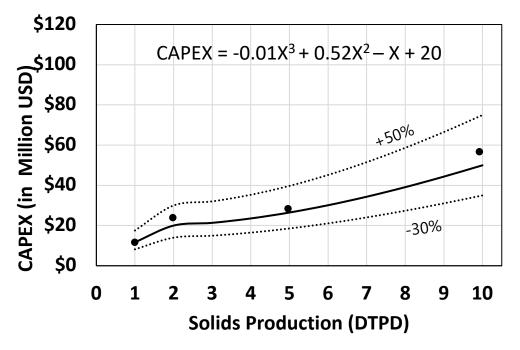

Minnesota Pollution Control Agency

MINNESOTA POLLUTION CONTROL AGENCY

March 2023

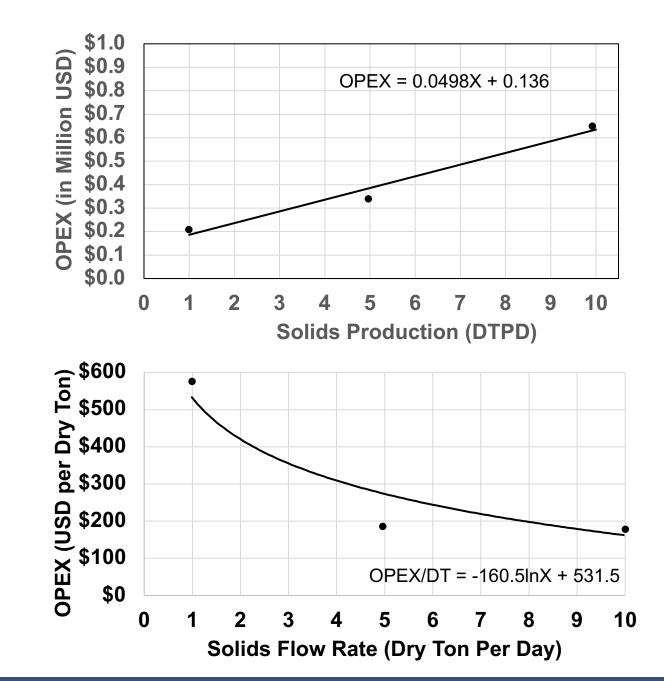
Prepared by: Barr Engineering Co., Hazen and Sawyer


MINNESOTA POLLUTION CONTROL AGENCY


Technology Screening

Technology	Degree of Commercialization	Demon- strated for PFAS	>90% PFAS Destruction Efficiency
Super Critical Water Oxidation (SCWO)	PFAS removal/destruction – developing Example vendors: <u>Battelle PFAS</u> <u>Annihilator, Aquarden Technologies,</u> <u>374Water</u> .	Yes	Yes (Greater than 99% reduction of the total PFAS identified in a targeted compound analysis, including PFOS and PFOA. ¹)
Pyrolysis with Thermal Oxidation (biosolids)	Full-scale. Example vendors: <u>Anaergia</u> , <u>Bioforcetech</u> , <u>Biowaste</u> .	Yes	Yes (Complete removal from biochar. Thermal oxidizer destroys PFAS at an efficiency greater than 99.99%. ^{2,3})
Gasification with Thermal Oxidation (biosolids)	Full-scale. Example vendors: <u>Aries</u> , <u>Ecoremedy</u> .	Yes	Yes (99.5% total PFAS removal between feed and char when coupled with thermal oxidation. ⁴)
Biosolids Incineration	Mature technology. Full-scale.	Yes	No (Sewage sludge incinerators (SSIs) operate at 700-1,000°C. Complete destruction of PFAS requires temperatures over 1,000°C. ^{5,6})
Thermal Drying	Mature technology. Full-scale.	No	No

Solids Flow Rate (Dry Ton Per Day))


SCWO System Cost Curve

MINNESOTA POLLUTION CONTROL AGENCY

Construction cost includes:

- Installation
- Building
- Supporting elect, I&C, mech. Does not include:
- Sludge screening, dewatering

Available Online

Findings indicate PFAS destroying technologies for biosolids competitive with other processes

Evaluation of Current Alternatives and Estimated Cost Curves for PFAS Removal and Destruction from Municipal Wastewater, Biosolids, Landfill Leachate, and Compost Contact Water

Prepared for Minnesota Pollution Control Agency

May 2023

Prepared by: Barr Engineering Co., Hazen and Sawyer ".....In contrast, emerging biosolids technologies capable of destroying PFAS can be costcompetitive with current practices."

Groundbreaking study shows unaffordable costs of PFAS cleanup from wastewater | Minnesota Pollution Control Agency (state.mn.us)

Conclusions

Conclusions

- > Pyrolysis and SCWO are identified as potential technologies for PFAS destruction in biosolids.
- Despite their promise, critical knowledge gaps remain concerning the identity and fate of resulting transformation products in potential pyrolysis configurations and treatment conditions.
- While targeted, non-targeted, and total PFAS analyses will remain indispensable, it is critical to develop methods for volatile PFAS characterization.
- Both technologies still have limited full scale implementation.
- > These technologies also lack information on long term operational information
- > These technologies convert organics into other products and eliminate/minimize the disposal

Thank you!

Micah Blate, PE – Speaker

mblate@hazenandsawyer.com

Co-authors:

Mo Abu-Orf, PhD

Derya Dursun, PhD, PE