



#### PFAS is everywhere, and will be with us a for a long time





# Strong C-F bonds take centuries to break down in nature "Forever Chemicals" Accumulate in the body with half-life of years



#### Market is looking for a PFAS destruction solution

**Bottom-up public pressure** 



#### **Action today at all levels**



#### **Dwindling disposal options**











#### **Federal**

- → EPA PFAS Action Act 2022
- → Infrastructure Law: \$10B for monitoring and remediation

#### **Industry**

- → \$1B in RFPs already outstanding
- → 40% CAGR

#### **Corporate**

DuPont, Chemours, Corteva to pay Delaware millions over damage from PFAS or 'forever chemicals' seff Nebburg Debagar News Journal

Published 4:32 p.m. ET July 13, 2021 | Updated 7:02 p.m. ET July 13, 2021



#### Landfill

Raising fees, refusing loads



#### **Wastewater Treatment Plant**

Raising fees, refusing loads



#### Incinerator

Expensive, risk of being disallowed



#### Other destruction technologies

Still in the lab or not economic



## **PFAS Chemistry**

PFAS- Per and Polyfluoroalkyl substances.

Per -fluoroalkyl substances: fully fluorinated tail.

Poly-fluoroalkyl substances: non-fluorine atom attached to one or more carbon.







## **Chain Length: Long Chain & Short Chain**

- Long chain:
  - PFCAs with 8 or more carbons
  - PFSAs with six or more carbons

- Short chain:
  - PFCAs with seven or fewer carbons
  - PFSAs with five carbons or less

| Number of Carbons | 4                 | 5     | 6     | 7                | 8                | 9    | 10   | 11    | 12    |  |
|-------------------|-------------------|-------|-------|------------------|------------------|------|------|-------|-------|--|
| PFCAs             | Short-chain PFCAs |       |       |                  | Long-chain PFCAs |      |      |       |       |  |
|                   | PFBA              | PFPeA | PFHxA | PFHpA            | PFOA             | PFNA | PFDA | PFUnA | PFDoA |  |
| PFSAs             | PFBS              | PFPeS | PFHxS | PFHpS            | PFOS             | PFNS | PFDS | PFUnS | PFDoS |  |
| Short-chain PFSAs |                   |       |       | Long-chain PFSAs |                  |      |      |       |       |  |

\*ITRC, 2019



### **Electrochemical Oxidation of PFAS**



Free electrons **break C-F bonds** resulting in CO<sub>2</sub>, HF, F<sup>-</sup>



Treats broad range of difficult contaminants at lower cost than current technologies



**Simple and rugged** enough to deploy on-site



## **PFAS Destruction Mechanism**

## Two Step Reaction

- 1. Convective-Diffusive Transport of PFAS to Anode Surface
- 2. Direct Electron Transfer Reaction on Electrode Surface







## **PFAS Destruction Mechanisms**

Rate Constant Comparison shows importance of mechanisms

Combination of mass transport and chemical kinetics

- Flow rate/turbulence
  - Too slow and diffuse layer is thick
  - Too high and not enough time to sorb to surface
- Solubility/hydrophobicity
  - Prevents sorption to surface
- Anode Surface Area



#### Test 1

PFOA = 3,750 ng/L (nominal)

PFOS = 3,750 ng/L (nominal)

Salts = 1,250 mg/L NaCl, 1,250 mg/L CaCl2, 1,250 mg/L MgSO4

## Synthetic Water Testing Protocol

#### Test 2

PFOA = 37,500 ng/L (nominal)

PFOS = 37,500 ng/L (nominal)

Salts = 1,250 mg/L NaCl, 1,250 mg/L CaCl2, 1,250 mg/L MgSO4

Used 16L water, recirculated for 6 hours at 8V. Collected Samples at 2 hr intervals

Test 1 – Current = 61A

Test 2 – Current = 55A

Samples sent to Eurofins (PFAS) and ASU (AOF)



#### Results

#### Test 1 (low concentration)

First Order Decay Rates

- $\circ$  PFOA = 2.98 x 10<sup>-2</sup>/min
- PFOS = 3.09 x 10<sup>-2</sup>/min

Achieved non-detectable concentrations (2 ng/L) of PFOA and PFOS at ~550 W-hr/gal





## **Adsorbable Organic Fluorine**





# High Concentration PFAS Testing

#### First Order Decay Rates

- $\circ$  PFOA = 2.40 x 10<sup>-2</sup>/min
- PFOS =  $2.46 \times 10^{-2}$ /min

(Simulated RO brine)





## **Adsorbable Organic Fluorine**





## **By-Product Formation**



Small amounts of shorter chain compounds were detected

PFHxA (C6)

PFHpA (C7)

6:2 FTS



PFOA and PFOS and AOF seemed to reform at end of test after reaching non-detectable levels (2  $\mu g/L$ ).



## **By Product Measurements**

|               | Carboxylic Acids (ng/L) |               |               |              |              | Sulfonic Acids (ng/L) |       |               |               | Total PFAS<br>(ng/L) |              |       |       |
|---------------|-------------------------|---------------|---------------|--------------|--------------|-----------------------|-------|---------------|---------------|----------------------|--------------|-------|-------|
| Time<br>(min) | PFPeA<br>[C5]           | PFHxA<br>[C6] | PFHpA<br>[C7] | PFOA<br>[C8] | PFNA<br>[C9] | PFDA<br>[C10]         | Total | PFHxS<br>[C6] | PFHpS<br>[C7] | 6:2FTS<br>[C8]       | PFOS<br>[C8] | Total | Total |
| 0             | ND                      | 7             | 4             | 2550         | 6            | 19                    | 2586  | 5.5           | 13            | 38.5                 | 3000         | 3057  | 5643  |
| 120           | ND                      | ND            | ND            | 73           | ND           | ND                    | 73    | ND            | ND            | 71                   | 60           | 131   | 204   |
| 240           | ND                      | 44            | ND            | ND           | ND           | ND                    | 44    | ND            | ND            | 230                  | ND           | 230   | 274   |
| 360           | ND                      | 140           | 72            | 140          | 44           | 43                    | 439   | ND            | ND            | 330                  | 78           | 408   | 847   |
|               |                         |               |               |              |              |                       |       |               |               |                      |              |       |       |
| 0             | 2.1                     | 50.5          | 16            | 21500        | 31.5         | 87                    | 21687 | 46            | 180           | 66                   | 33500        | 33792 | 55479 |
| 120           | ND                      | 61            | ND            | 290          | ND           | ND                    | 351   | ND            | ND            | 56                   | 400          | 456   | 807   |
| 240           | ND                      | 89            | ND            | 140          | ND           | ND                    | 229   | ND            | ND            | 340                  | 190          | 530   | 759   |
| 360           | ND                      | 110           | ND            | 130          | 55           | 75                    | 370   | ND            | ND            | 700                  | 300          | 1000  | 1370  |

|       | Initial | Final        | Minimum     |
|-------|---------|--------------|-------------|
| Day 1 | 5643    | 847 (85%)    | 204 (96.4%) |
| Day 2 | 55479   | 1370 (97.5%) | 759 (98.7%) |



#### **PFAS in Landfill Leachate**

Initial concentration of PFAS: ~2 µg/L Target concentration of PFOS: 60 ng/L Target concentration of PFOA: 2,300 ng/L



| Case | Initial C<br>(ng/L) | Target C<br>(ng/L) | Flow<br>(GPD) | #<br>Reactors |      | OPEX<br>(\$/kgal) |
|------|---------------------|--------------------|---------------|---------------|------|-------------------|
| PFOS | 557                 | 60                 | 180000        | 67            | 1.4  | 6.06              |
|      |                     |                    |               |               |      |                   |
| PFOS | 557                 | 60                 | 43200         | 17            | 0.37 | 6.48              |





## **PFAS in Landfill Leachate**

#### Initial concentration of PFOA+PFOS: ~800 ng/L





**Primary Treated Leachate** 



## 1st Order Kinetic Rate Constants

| Case                | Condition | Water<br>Matrix                          | Voltage                    | Current<br>Density | First Order Rate Constant (min <sup>-1</sup> ) |          |
|---------------------|-----------|------------------------------------------|----------------------------|--------------------|------------------------------------------------|----------|
|                     |           | IVIALITX                                 |                            | (mA/cm²)           | PFOA                                           | PFOS     |
| Synthetic           | Low C     | Synthetic                                | 8.1 (applied)              | 71                 | 0.0298                                         | 0.0309   |
| Brine               | High C    | Synthetic                                | 8.0 (applied)              | 67                 | 0.0240                                         | 0.0246   |
| Leachate 1          |           | Leachate                                 | 7.5 (applied)              | 87                 | 0.0131                                         | 0.0163   |
| Leachate 2          |           | Leachate                                 | 3.5 (applied)              | 17                 | 0.0101                                         | >0.00433 |
| Lin et al.<br>2018  |           | 20 mM<br>NaClO <sub>4</sub>              | 3.7-3.9 (anodic potential) | 5                  | 0.034                                          | 0.013    |
| Liu et al.          |           | 40 mM<br>Na <sub>2</sub> SO <sub>4</sub> | 3-3.5 (anodic potential)   | 10                 | 0.035                                          |          |
| 2019                | Nitrate   | 60 mM<br>NaNO₃                           | 3-3.5 (anodic potential)   | 10                 | 0.014                                          |          |
| Wang et al.<br>2020 |           | 100 mM<br>Na2SO4                         | 3-3.5 (anodic potential)   | 10                 |                                                | 0.429    |
| Wang et al.<br>2021 |           | IX waste<br>brine                        | Not reported               | 10                 | 1.23E-03                                       | 1.87E-03 |



### **Conclusions**

#### **Electrochemical Oxidation:**

- Is capable of degrading high levels of PFOA and PFOS to near nondetectable levels
- Does not appear to create significant levels of short-chain byproducts
- Can achieve non-detectable levels of organic fluorine
- Can be a cost-effective destruction technology
- Does not appear to be cost effective for destruction of low concentration PFAS without an upstream concentration technology (IX, RO/NF, FF/SAFF)









**THANK YOU!** 

www.aclaritywater.com

