

Coastal Resilience - Miami Beach Case Study

Bernadette M. Callahan, PE Stantec Consulting Services Inc.

Agenda

- 1. Geography
- 2. Topography
- 3. Sea Level Rise
- 4. Challenges
- 5. Solutions

Miami Beach - Geography

- Southeast Florida
- Barrier Island
- o 7 square miles
- Historically, wetlands
- Atlantic Ocean to east
- o Biscayne Bay to west
- o Indian Creek in middle
- Low Elevation
- High Groundwater
- Porous Limestone

"Billion Dollar Sandbar"

Limestone

Miami Beach - Topographic Profile

Biscayne Bay

Atlantic Ocean

Climate Change Summary

Cause

- o Greenhouse gases are high and rising
- Oceans are warming
- Oceans are acidifying (reduction in pH)
- Sea levels are rising

Effect

- Temperature extremes
- Rainfall extremes
- Saltwater intrusion
- Coastal erosion and flooding
- Inland flooding and stormwater management
- Extreme storms

Sea Level Rise Projections

Cause

- Rising sea temperatures
- Thermal expansion of ocean
- Melting ice caps and glaciers

Effect

- o 6-12 inches by 2030
- o 14-34 inches by 2060
- 31-81 inches by 2100

- International Panel on Climate Change (IPCC)
- United States Army Corps of Engineers (USACE)
- National Oceananic and Atmospheric Administration (NOAA)

Sea Level Rise Challenges

- Increased flooding
- Saltwater intrusion
- Impacted drinking water supply
- Environmental Concerns
- Beach Erosion
- o Impacted Stormwater system
- Cost
- Politics

Challenge: Increased Flooding

Social Challenges

- Historic South Beach
- High value properties
- Commercial/Tourist hub

"Sunny Day" Flooding

Natural Challenges

- Low ground level
- Permeable limestone
- High groundwater
- High tides
- Sea level rise
- Tropical storms

Challenge: Saltwater Intrusion

Causes

- Draining of the Everglades
- Pumping of groundwater
- Droughts
- Drainage canals
- Permeable limestone
- Sea Level Rise

Challenge: Drinking Water Supply

Sea level rise + population growth = threatened urban water supply

In 2010

- Population = 5.6 million
- Water demand = 1.8 billion GPD

By 2030

- Population = 6.6 million
- Water demand = 2.1 billion GPD

Challenge: Environmental Concerns

Historic Flow Current Flow Okeechobee Route 41 **Everglades Constructed 1915-1928**

Challenges

- Salt water intrusion into freshwater ecosystems
- Ecological imbalance in the Everglades
- Habitat change impacting many native species

Challenge: Beach Erosion

Challenges

- Miami Beach is out of sand
- Sensitive coral reefs restrict off-shore dredging
- Color and texture must match existing
- Nourishment is needed often.
- Most expensive land is typically along beach

Miami Beach spends ~ \$6 Million annually on beach restoration.

Challenge: Stormwater System

- High volume of water
- Nutrient loading
- Turbidity
- Water velocity
- Land ownership
- Impacts to seagrass
- o Impacts to wildlife

The Plan

- \$400 \$500 million investment
- Implement policy changes
- Upgrade stormwater management system
- Raise roadways
- Raise sea walls
- Restore beaches and dunes
- Restore water to the Everglades
- Protect mangroves
- o Install shoreline protection
- Construct living shorelines
- Incentivize adaptation on private property

Solution: Policy Changes

- Increased freeboard
- Reduced impervious cover
- Building height allowances
- Elevated lot grades
- Incentivized private resiliency
- LEED
- Integration of LID
- Water conservation and reuse

	Existing Requirements	Proposed Requirements
Base Flood Elevation (BFE)	5.44 FT	6.44 FT
Freeboard	0 feet above BFE	+1 to +3 feet above BFE
Seawall Elevation (Private)	3.2 FT	4 to 5.7 FT
Seawall Elevation (Public)	3.2 FT	5.7 FT
Minimum required yard elevation	No minimum required	5.0 FT

Solution: Upgrade Stormwater System

Solution: Upgrade Stormwater System

Water Quality Upgrades

Design Considerations

- o Power supply
- Water quality treatment
- o Pumps
- Backflow prevention
- Manatee grates

Upsized Pump

Design Considerations

- Emergency routes
- Adjacent elevations
- ADA accessibility
- Stormwater runoff

20th Street and Purdy Avenue

Before After

Before After

Before After

Solution: Raise Sea Walls

Solution: Beach Renourishment

Need

- Protect infrastructure
- Preserve wildlife
- Support economy
- Build coastal resiliency

Design Considerations

- Remediation techniques
- Design for future
- Source of sand
- Disruption
- Cost

Solution: Restore Water to Everglades

Everglades restoration will increase the resilience of the natural & built ecosystem

- Increase water storage
- Restore freshwater flows
- Push back saltwater
- Secure drinking water
- Prevents peat collapse
- Protect water quality
- Protect soils, mangroves
- Protect native species
- Protect native wildlife
- Prevent barriers to wildlife movement

Solution: Protect Mangroves

- Increases drag on water motion
- Absorbs wave action
- Traps sediment in roots
- Tolerates salty soil
- Enhances juvenile fish nurseries
- Stores substantial amount of Carbon

Living Shorelines

- Stabilization of the shoreline
- Protection of surrounding intertidal zone
- Improvement of water quality
- Creation of habitat

Living Shoreline with Rock Breakwater

Beach Fill and Dune Creation

Living Shoreline with Vinyl Sheet Pile Breakwater

Solution: Construct Living Shorelines

Living Shoreline with Concrete Breakwater

Solution: Construct Living Shorelines

Rock Revetment

Armor Stone

Conclusions

- Sea levels will continue to rise
- Projections will improve over time
- Adaptation strategies exist
- Education is key
- Invest in codes and standards
- Being proactive is more affordable
- Partnerships are necessary
- Sustain resources, buy us time to adapt

