

How the Internet of Things Can Help Communities Better Manage Stormwater

Jamie Lefkowitz, P.E.

NEWEA CSO/Wet Weather Issues Conference October 27, 2015

- Why real-time control for stormwater?
- How does it work?
- Modeling results
- Case studies

Why Real-Time Control?

- 1. Better performance
- 2. More economical use of space + assets
- 3. Continuously monitored infrastructure

Why Real-Time Control?

- 1. Better performance
- 2. More economical use of space + assets
- 3. Continuously monitored infrastructure

How does real-time control work?

Nationwide Modeling Assessment

P Opti

SWMM Model Setup

Opti System

625 stations nationwide

5 storage sizes from 0.5" to 1.5" rainfall over drainage area (13,000 to 40,000 gal; representative design storms)

2 different logic scenarios:

maximize retention time for water quality improvement and/or beneficial reuse (retain water until next storm, discharge rate is 48 hours from full)

▷ avoid wet weather discharge to eliminate overflows and flooding (release water 2 hours after storm, configurable, discharge at 0.25 cfs)

over 12,000 simulations

Passive System

historic rainfall data from NCDC station

Simulation	Metric	Calculation	
Water Quality: Maximize Retention Time	Average retention time for water quality improvement	Flow-weighted average of water age for every drop that is discharged	
	Average water available for use	Water in storage during dry weather	
	Average wet weather storage utilization	Average percent full during wet weather	
	Percent time runoff retained	Hours when rainfall is occurring <u>and</u> discharge equals zero	
CSO/Flooding: Minimize Wet Weather Discharge	Average wet weather discharge	Average discharge flow rate during wet weather	
	Average wet weather discharge during inflow > 0.25 cfs	Average discharge flow rate with inflow is greater than 0.25 cfs	
	Wet weather capture	Total inflow not discharged during wet weather	
	Percent time runoff retained	Hours when rainfall is occurring but with zero discharge	

Median values for all 625 stations

Simulation	Metric	Passive Storage	Opti Active Storage
Water Quality: Maximize Retention Time	Long term average retention time	12 hours	196 hours
	Average water available for use ¹	0	590,000 gal/acre/year
	Average wet weather storage utilization	26%	68%
	Percent time runoff retained	3%	59%
CSO/Flooding: Minimize Wet Weather Discharge	Average wet weather discharge	0.052 cfs	0.021 cfs
	Average wet weather discharge during inflow > 0.25 cfs	0.265 cfs	0.171 cfs
	Wet weather capture	2%	61%
	Percent time runoff retained	2%	91%

Note: median values shown for 1 inch storage size

1: No withdrawals were simulated. In the passive system, no water was available for use because the outflow valve was always open. In the Opti system, water captured and not released during wet weather was considered available for use. The value shown is the annual average capture volume.

Each NCDC station modeled has an average annual rainfall

The results show a very strong correlation between long term average retention time and average annual rainfall for each site

This plot shows the regression lines for each storage size, allowing for estimating possible retention times based on average rainfall, with Opti active discharge

Passive discharge scenarios achieve only 12 hours retention time, on average, because most storms to not fill the storage unit OptiRTC.com

Available Water for Reuse by Annual Rainfall

Each NCDC station modeled has an average annual rainfall

The results show a very strong correlation between the total water stored during dry periods and the annual rainfall

This plot shows the regression lines for each storage size, allowing for estimating possible reuse benefits based on average rainfall, with Opti active retention and discharge

Passive discharge scenarios do not allow for reuse because the runoff cannot be stored for longer than the passive discharge time (48 hours max)

POpti Volume Discharged During Wet vs. Dry Weather

POpti Volume Discharged During Wet vs. Dry Weather

Opti Volume Discharged During Wet vs. Dry Weather

Passive

Real-Time Control

Logan Airport KPIs

Simulation	Metric	Passive Storage	Opti Active Storage
Water Quality: Maximize Retention Time	Long term average retention time	12 hours	171 hours
	Average water available for use ¹	0	720,000 gal/acre/year
	Average wet weather storage utilization	25%	68%
	Percent time runoff retained	3%	63%
CSO/Flooding: Minimize Wet Weather Discharge	Average wet weather discharge	0.046 cfs	0.016 cfs
	Average wet weather discharge during inflow > 0.25 cfs	0.255 cfs	0.147 cfs
	Wet weather capture	1%	65%
	Percent time runoff retained	3%	93%

Note: median values shown for 1 inch storage size

1: No withdrawals were simulated. In the passive system, no water was available for use because the outflow valve was always open. In the Opti system, water captured and not released during wet weather was considered available for use. The value shown is the annual average capture volume.

Case Studies

Examples of using real-time control to meet multiple objectives

Stormwater Capture & Reuse

Stormwater Capture & Reuse

100.0% Auto

In one year, the system prevented 100,000 gallons of wet weather flow from entering a combined sewer overflow area

making it available for

on-site irrigation

٠

CSO Mitigation & Reuse at EPA Headquarters

- 1. Stormwater reuse
- Prevent wet weather flow to combined sewer 2
- Six 1,000 gallon underground cisterns ٠
- Cisterns remain full except in advance of rain events •

🧈 🗲 EPA Cist	erns
Drain Valve Control	Current Storage
Operation Mode	Latest image only 12hr 24hr
Automatic Control	
Manual Control	
Manual Control	
Close	
Requested changes may take several minutes to be verified.	
System Status (48hr)	
Operation Mode	

2015-10-26 13:52:23

P Opti

Retrofit for Increased Water Quality Benefit

- 120 acre drainage area
- Runoff from 0.2" in storm event or 0.12" of impervious storage
- Very small existing pond
- Did not have an original water quality control purpose

Reduce erosive flows Improve downstream water quality

Monitoring Data: Quantify Performance Metrics

Water Quality

Stream Restoration

0.1 watershed inches of storage - dramatic increases in retention time for a very small facility

- Low cost sensors and data connectivity
- Forecast-based decisions maximize stormwater infrastructure potential

Increase

- Retention time 6-10x
- Wet weather capture by more than 60%
- Reportable performance
 data

Decrease

- Wet weather discharge rate by > 50%
- Required control volume
- Erosive flows & flooding

Discussion

Contact Information

Jamie Lefkowitz, P.E. jlefkowitz@optirtc.com 603-801-1051

More materials and information: <u>http://library.optirtc.com/</u>

