

Innovative New Media with Advanced Deep Bed Primary Filtration Makes Significant Strides

Amit Kaldate, PhD Tomorrow Water

29 January 2025 Boston, MA

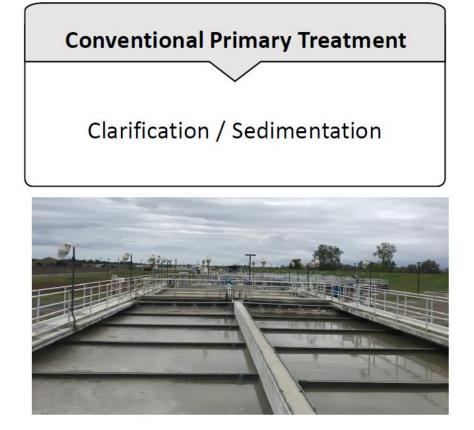
History of Biologically Active Filters (BAF) Development

	Technology Media		Flow	Aeration	Application	
1950s	Trickling Filter	Rock (sunken) Down		None (usually)	Secondary, Tertiary	
1970s	Flopac™	Chamotte (sunken)	Down	Pre-filtration	Tertiary	
1980s	Biofor [®] , Biocarbone [®]	Biolite, Exp. Shale (sunken)	Up	Buried Diffusers	Secondary, Tertiary	
19803	Dynasand™	Sand (sunken)	Up	Airlift Pump	Tertiary	
	Biostyr®	EPS spherical (float)	Up	Diffusers	Secondary, Tertiary	
1990s	BBF™	EPP ovoid (float)	Up	Diffusers	Secondary, Tertiary	
2010s	Proteus™	EPP cross (float)	Up	Diffusers	Primary, Secondary, Tertiary, Wet Weather	

APPLICATIONS

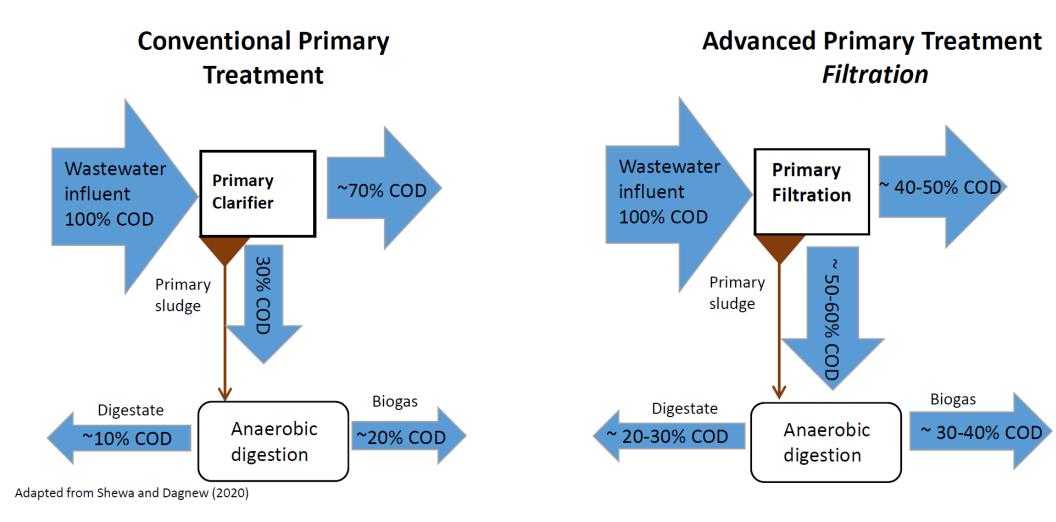
- 1. Primary Filtration
- 2. Wet Weather Flow (WWF) Treatment
- 3. Secondary BOD Removal
- 4. Secondary BNR
- 5. Tertiary Nitrogen Control
- 6. Split Bed DN & Reuse Polishing

7. Partial deNitrification Anammox (PdNA)



Primary Treatment Technologies

Caliskaner et al, WEFTEC 2023


 Chemically Enhanced Primary Treatment (CEPT)

Advanced Primary Treatment (APT)

- Filtration Technologies
 - Primary Filtration (PF)
 - Primary Biofiltration (PBF)
 - Primary Effluent Filtration (PEF)
- Microscreens
- Rotating Belt Screens/Filters
- Other Emerging Technologies

Primary Treatment Technologies

Drivers for Advanced Primary Filtration

Primary Clarifier

Slow - settling by gravity force

Controllable ? No. relies on gravity

Range of operation – limited, <1.5Q

Average settling time: 60 to 90 minutes

Foot print – Large

Advanced Primary Filtration

Fast - filtration by hydraulic force

Controllable? Yes. With media size and bed depth

Range of operation – broad, 3-5 Q

Average filtration time: 7 to 15 minutes

Foot print – smaller, ~20% of clarifier

FILTER PRIMARY SOLIDS INSTEAD OF SETTLING

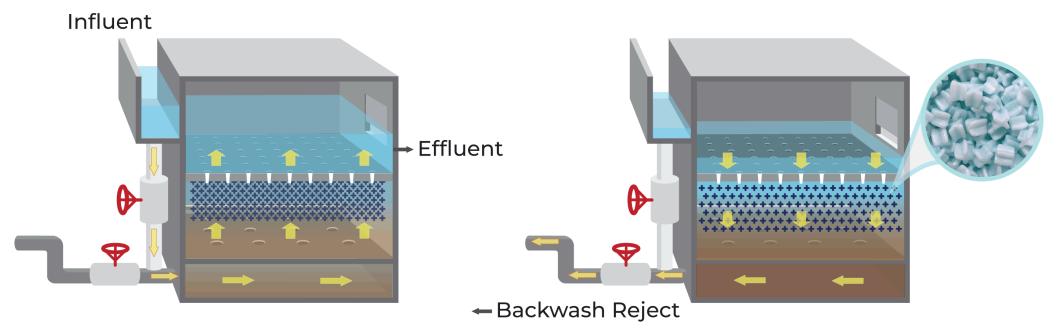
Huge 80% Footprint Reduction Over Primary Clarifiers

CAPTURE MORE TSS

70-90% Removal Instead of 30-60% in Clarifiers

ALLOWS FOR CARBON DIVERSION

Grab More BOD Upstream of Aeration & Send To Digestors 10-25% Aeration Energy Reduction 10-25% More Secondary Treatment Capacity 20-30% Increase In Gas Production


WHY ADVANCED PRIMARY FILTRATION?

Advanced Primary Filtration

Filtration

Periodic Backwash

1. NEW MEDIA

Handles High Solids

Low Head Loss

More Effective Backwash

2. SPLIT-BED AERATION

Oxic on top, Anoxic below

High SSA means intensification

Two Major Innovations

LEGACY MEDIA

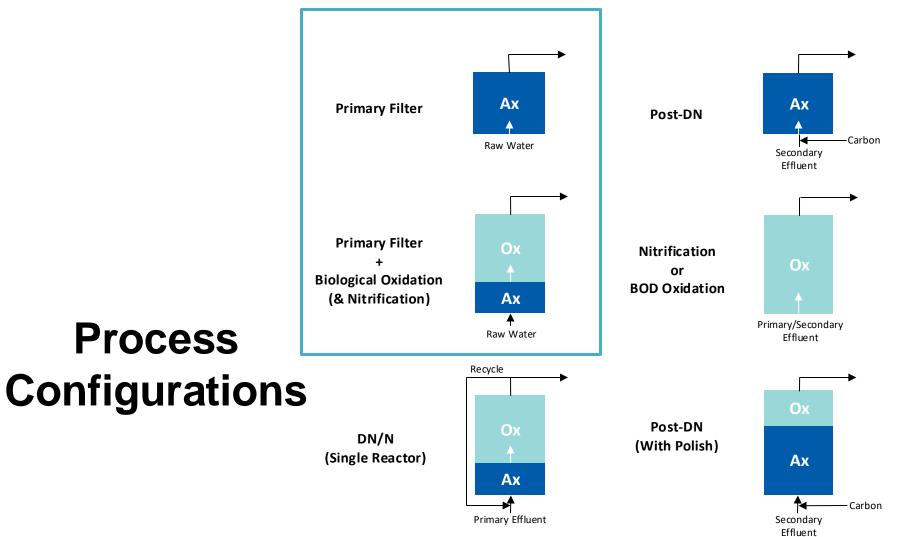
Expanded Polypropylene (EPP)

• Long lifespan

Ovoid Shape

GREAT for Tertiary Biofiltration

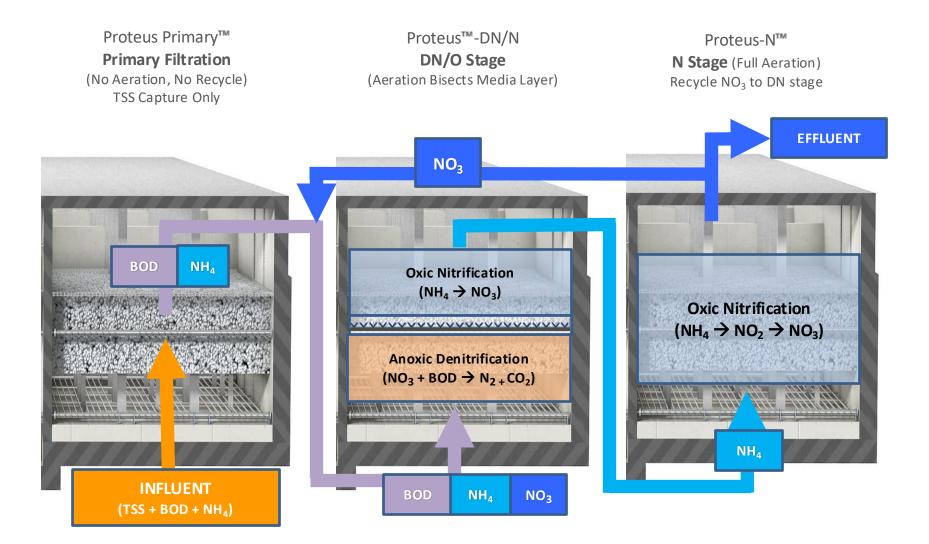
New Floating Media



1	50% MORE specific surface area : 2100 m ² /m ³ - 3x HIGHER than K5 (IFAS) - 50% > other BAFs	6
2	High Void Fraction: 0.4~0.5 - Low head loss @ high solids	
3	High SS Loading: >3 kg/m ³ (216lb/1000 ft ³) - Minimizes backwash rate	
4	High O2 Transfer: SOTE 35-45% - With only coarse-bubble aeration	
5	Made With Expanded Polypropylene - Cost-effective - Long lifespan (>35 years)	

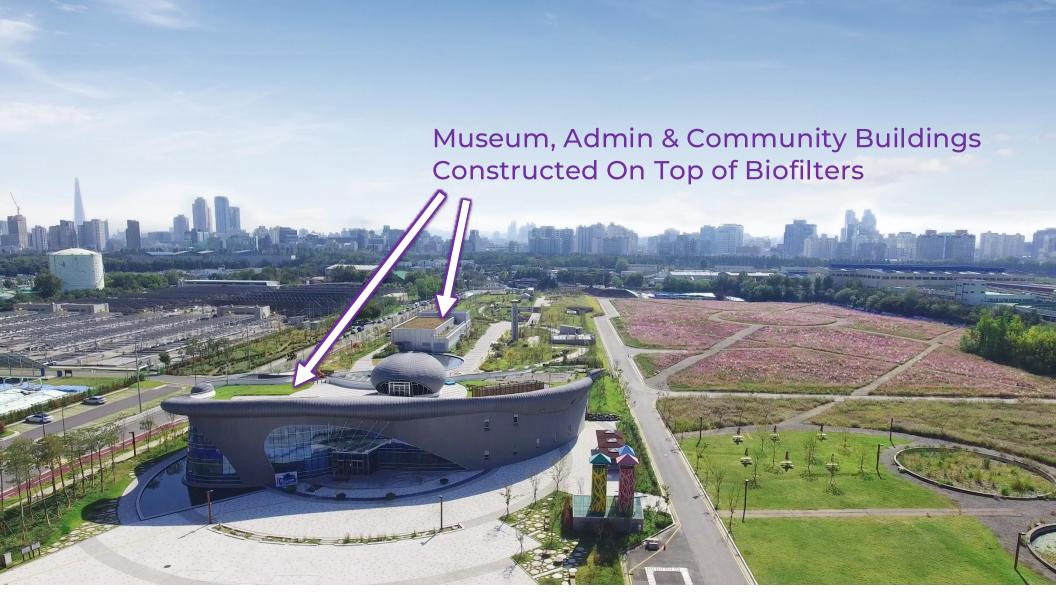
PROTEUS FULL-SCALE INSTALLATION

Jungnang WRF Seoul, Korea


66 MGD Complete Wastewater Treatment Process

132 MGD WWF Filter in parallel with Primary Filter

Commissioned 2017



JUNGNANG WRF Seoul, Korea

Chemical P Removal (Alum + Filter)

JUNGNANG WRRF PERFORMANCE DATA

Operating with zero permit violations over 7 years

Actual HRT: 3.4 Hrs (excluding MDF)

Design HRT: 2.1 Hrs

Data from March-October 2018

Paran	Parameter		Permit	BBF Effluent	Plant Effluent
BOD5	Ave	120	10	9.1	1.4
	Max	192		17	3.2
	Min	42		2.4	0.5
SS	Ave	102	10	4.9	2.5
	Max	236		11	6
	Min	38		1.5	0.4
TN	Ave	33	20	15	13
	Max	44		20	19
	Min	8		7	6.0
ТР	Ave	3.1	0.5	1.6 🗖	0.23
	Max	4.2		2.6	0.56
	Min	0.8		0.2	0.05

Wet Weather Flow Treatment Strategies

<u>Traditional</u>

- 1. Increase Plant Capacity
- Storage & Equalization (Tunnels/Interceptor)
 Big CAPEX, useless in dry weather, needs cleaning
 Presumes predictability of max flows
- 3. Divert & Blend
 - Risk violating permit without auxiliary treatment
 - Blending permits may be hard to get

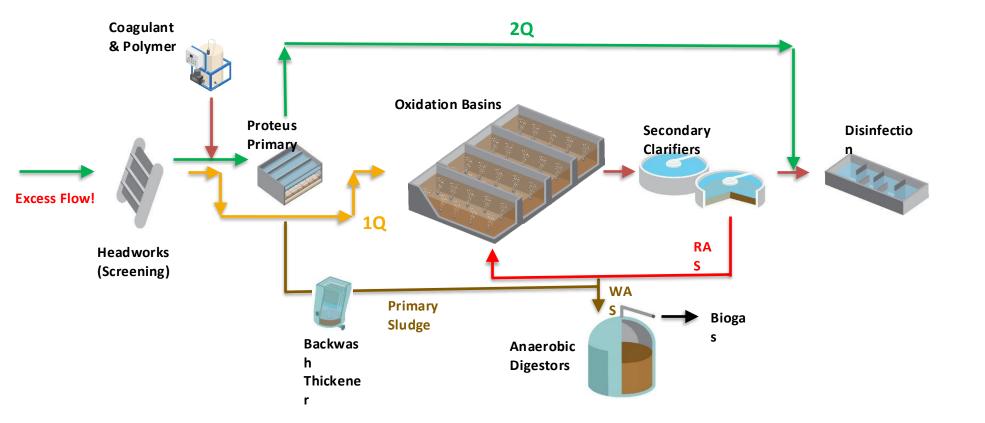
<u>New(er)</u>

- 1. Auxiliary High-Rate Treatment
 - Physical filtration or biological treatment?
 - A lot of infrastructure just for rare WWF events
- 2. Dual-Use Systems: The best of both worlds
 - Provides treatment for dry weather flow
 - Switch feed or ramp up loading rate to manage WWF

1st DUAL-USE INSTALLATION

Seonam WRF, Seoul, Korea

• 95 MGD Primary Filter


<image>

- **190 MGD WWF Filter** Flow velocity increased
- Commissioned 2020

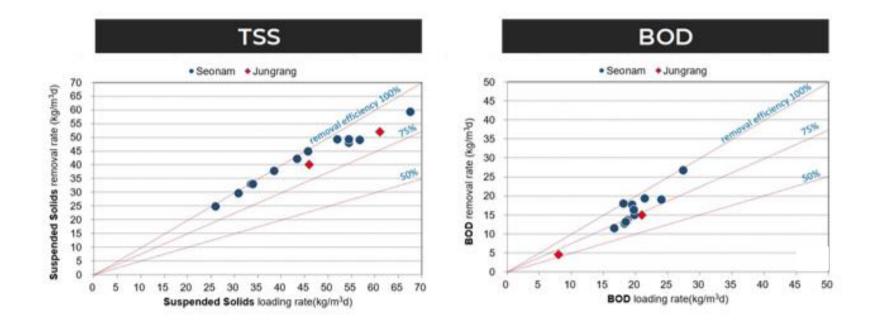
Seonam WRC – 190 MGD (Dual-Use)

SEONAM WRRF

2020 WET WEATHER FILTER PERFORMANCE: Seonam (190 MGD)

Ax

Raw Water



				Influent		Effluent		iciency
	Event	Q (m3/d)	BOD ₅	SS	BOD ₅	SS	BOD	SS
		(113/0)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		
	1	720,000	79.8	288.0	21.6	34.8	73%	88%
	2	720,000	102.3	242.0	20.7	32.8	80%	86%
→	3	720,000	116.7	232.0	2.8	27.2	98%	88%
	4	720,000	91.5	232.0	9.2	22.0	90%	91%
	5	720,000	84.4	222.0	20.6	11.4	76%	95%
	6	720,000	78.0	195.0	23.9	3.6	69%	98%
	7	720,000	82.8	185.0	7.5	5.4	91%	97%
	8	720,000	79.2	164.0	23.2	3.0	71%	98%
ſ	9	720,000	77.1	143.0	0.4	2.4	99%	98%
	10	720,000	71.1	145.0	21.8	4.1	69%	97%
	11	720,000	78.9	111.0	22.4	5.3	72%	95%
	12	720,000	84.0	132.0	14.4	5.4	83%	96%
	Average		85.5	190.9	15.7	13.1	81%	94%
	Max		116.7	288.0	23.9	34.8	99%	98%
	Min		71.1	111.0	0.4	2.4	69%	86%

Full-scale Plants – Jungnang (132 MGD) and Seonam (190 MGD)

PROTEUSPERFORMANCE

Pilot Testing in North America

GCDC, Michigan April, 2019 - May, 2020: 13 Month

Testing by Plant Lab and outside lab for special tests. Operation by TW (daily) and Plant staff (backup, daily) Paper at WEFTEC 2020

Additional Pilots

- Bridgeport, CT 2023 (WEFTEC 2024)
- Linda County, CA 2024 (WEFTEC 2024)

MMSD, Wisconsin Jan – June, 2022: 6 Month

Testing by Plant Lab and outside lab for special tests. Operation by Veolia staff (daily) and TW staff (monthly) Paper at WEFTEC 2023

- Los Angeles County, CA 2025
- City of Cincinnati, OH 2025 BAF

PRIMARY & WWF 13-MONTH PILOT

3rd Party Reviewer: Dr. Glen Daigger Paper at WEFTEC 2020

GENESEE COUNTY MICHIGAN

PHASE 1: Wide range of influents (up to133gpm), simulate wet weather flows

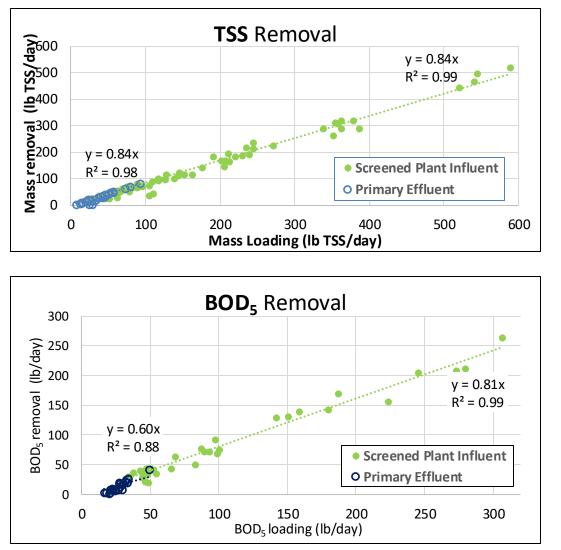
PHASE 2: Stable performance with dilute Primary Effluent

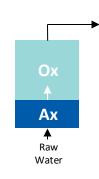
PLUS: Catch a real wet weather event

Results Summary

Removal	Phase 1 (Raw) Influent	Phase 2 (PE)		ary Filter moval	Biological Filter Removal	
	(mg/L)	Influent (mg/L)	Raw Water	Primary Effluent	Raw Water	Primary Effluent
TSS	185	76	78%	71%	84%	84%
BOD	161	64	69%	51%	81%	60%
Total P	5.1	3.2	45%	37%	54%	51%
Fecal Coliform	7.5 CFU/mL	2.3 CFU/mL	51%	NA	79%	45%
Chlorine Demand	0.67	NA	70%	NA	88%	NA

OPTIMUM VALUES FOR THIS PLANT:


Primary Filter:	15-20 m/hr (5-8 min EBCT)
Biological Filter:	15-20 min EBCT


Proteus+ Biological Filter

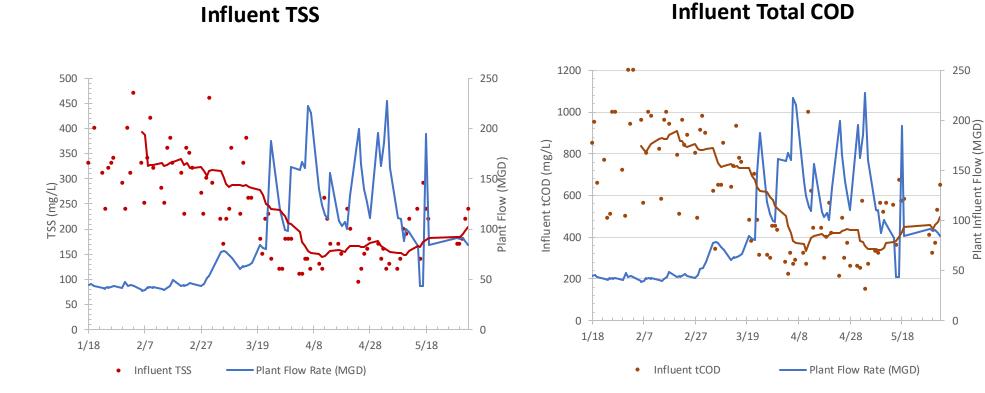
13-Month Pilot in Michigan

84% TSS removal Higher removal than primary filter (78%)

81% BOD Removal at 15-20min EBCT in plant influent 60% for PE

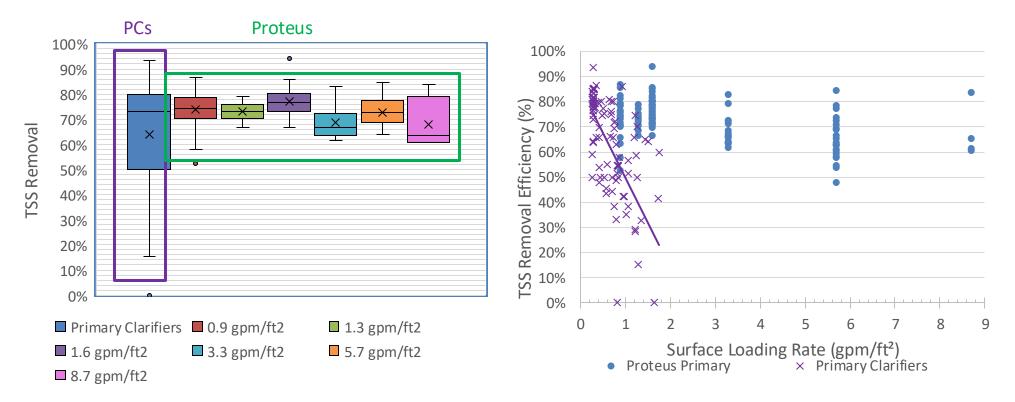
2022 Dual-Use Pilot for Milwaukee Metro Sewerage District

- 5-month pilot at South Shore WRF
- Operated by MMSD, validation by Black & Veatch
- Tested Primary and Bio Filter Retrofit Designs
- Tested 6 different SLRs of 0.9-8.7 gpm/sf (equiv. 40 – 572 MGD)
- TSS up to 1200 ppm, plus low-flow slugs
- Shallow bed to fit to hydraulic profile at MMSD SSWRF



Influent vs Effluent during low-flow solids slug

RESULTS: Influent Quality & Flow

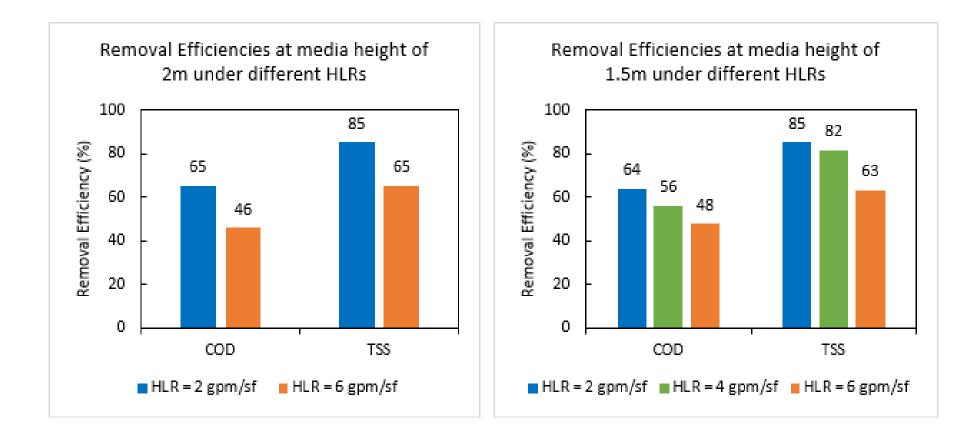


Parameter	Low Flow Pe	riod (1/18-3/20)	Average Flow Period (3/21-6/2)		
	Average (mg/L)	Range (mg/L)	Average (mg/L)	Range (mg/L)	
TSS	328	170-1200	171	93-290	
tCOD	793	340-1200	416	150-1000	
cBOD₅	376	300-460	192	95-280	
sCOD	393	172-754	185	77-757	

RESULTS: Proteus vs Primary Clarifiers

- Proteus outperformed South Shore's primary clarifiers at all flow rates for median TSS removal
 - Despite iron salts dosed in primary clarifiers (vs. no chemical dose in Proteus)
- Proteus removal more consistent than clarifiers. Removal efficiency decreased only ~10% as SLRs increase

California Energy Commission Project at Linda County Water District, CA


Overall Treatment Performance ¹								
TSS			Total COD					
Avg. Influent	471	mg/L	Avg. Influent	1097	mg/L			
Avg. Effluent	62	mg/L	Avg. Effluent	360	mg/L			
Removal Efficiency	85	%	Removal Efficiency	65	%			
PC Removal Efficiency ²	62	%	PC Removal Efficiency	37	%			
VSS/TSS Ratio	Influent	0.83	COD/TSS Ratio	Influent	2.12			
100/ 100 Mado	Effluent	0.74		Effluent	5.77			
Carbonaceous	BOD		Soluble COI	0				
Avg. Influent	315	mg/L	Avg. Influent	202	mg/L			
Avg. Effluent 180		mg/L	Avg. Effluent	206	mg/L			

¹ Performance under ADF (2gpm/ft²) and media height of 2m is presented in TSS and tCOD removal efficiency. ² PCs at Linda WWTP are typically operated at surface overflow rates between 400 and 1000 gal/day/ft².

Program Manager: Caliskaner Water Technologies

TSS Removal at Different Media Heights and HLRs

Comparative loading and performance of full-scale plants and pilot plants

Site	Flow (m³/d)	Surface Loading Rate (m ³ /m ² d)	Surface Loading Rate (gpm/sf)	Solids Loading Rate (kg SS/m ³ per cycle)	TSS Removal (Mean)	BOD Removal (Mean)
Jungnang Primary	250,000	41-408	0.7-8.2	0.05—2.12	52%	33%
Jungnang WWF *chems added	500,000	480	8.2	4.2	87%	63%
Seonam Primary *Larger Media	360,000	250	4.3	1.3—9.2	32%	25%
Seaonam WWF *chems added	720,000	468	8.6	1.7—4.0	94%	81%
Michigan Primary	725	360—480	6.1—8.2	1.5—7.3	75%	60%
Michigan BEPT	349	144—192	2.5—3.3		84%	81%
Milwaukee Primary	27	52—510	0.9—8.7	1.5—4.3	75%	46%
Milwaukee BEPT	27	52—76	0.9—1.3	1.4—2.3	77%	64%
Bridgeport Primary	119	64—867	1.1—14.8	0.3—13.1	69%	44%

Amit Kaldate, PhD

Vice President <u>ak@tomorrowwater.com</u> (804) 399-3203 tomorrowwater.com

