MUNICIPAL/INDUSTRIAL RELATIONSHIP BUILDING

AS TREATMENT AND EFFLUENT END POINTS EVOLVE, SO TOO SHOULD COMMUNICATIONS

MICHAEL A. SMITH, PE

Acknowledgements

Stephanie Ishii, PhD, PE, ENV SP Hazen and Sawyer Bob Weinschrott, PE Hazen and Sawyer Mary Sadler, PE Hazen and Sawyer

Outline

Pretreatment fundamentals and evolving needs

Establishing a mutual understanding of objectives, constraints, and flexibilities

Collaborative solution development

- Operational changes / internal BMPs
- Product substitution
- Capital improvements pretreatment, centralized treatment

Lessons learned

Pretreatment fundamentals and evolving needs

National Pretreatment Regulations

Title 40 CFR Chapter I Subchapter N Part 403

Gives POTW legal authority to control discharges to prevent pass through or interference with collection system, treatment processes, discharge permit, reclaimed water permit, biosolids

Allows site-specific thresholds for pollutants of concern to be developed in the absence of state and federal criteria

Examples: total dissolved solids, refractory nitrogen (rDON), sulfate, fats, oils, and grease (FOG)...

POCs are a function of site-specific sensitivities

POCs are a function of site-specific sensitivities and targets Membrane

POCs are a function of site-specific sensitivities and targets

Example: City of Plant City, FL

 Industrial discharge event caused scaling of downstream RO process

 RO autopsies would later reveal that scaling was caused by elevated calcium and phosphorus

Forthcoming Industry: The Past ≠ The Future

Majority of industrial development was not the basis of existing sewer use ordinances

Complex One Water System – Chandler Arizona

Significant Changes to System Since 2008

- All treated effluent discharged to groundwater
- Drinking water is 100% groundwater
- Local Limits update needed to re-align program with City's development
- Industrial growth (30% total annual average WRF flow is from industry)
- More protective
 regulatory thresholds

Local Limit Solutions

- A more formal process was considered for Wasteload Allocation method in combination with UC Method
- Mitigate stringent updated local limits based solely on a uniform concentration
- Industries sorted by size (e.g., volume of industrial discharge)
- Wasteload allocation for larger industries removed from 2022 MAIL
 - Wasteload allocation based on the maximum discharged in the current data set
 - Future industrial flow included
- Capacity available for small to mid-sized industries
- In a few cases, an iterative process was used for a few pollutants / industries

Establishing a mutual understanding of objectives, constraints, and flexibilities

A mutual understanding of objectives, constraints, and flexibilities across municipal and industrial perspectives provides:

- A shared appreciation for the community benefits enabled by each
- A foundation for collaborative solution development

What data / information needs to be requested?

Municipal perspective

Municipal perspective

Industrial perspective

Industrial perspective

Identifying Critical Information for Collaborative

Solutions

- Current and projected demand ٠ / discharge timeline?
- Discharge information: ٠
 - Typical discharge quality and quantity?
 - Intermittent / event-related discharge quality and quantity?
 - Chemical inventory?
 - Discharge schedule (times, frequencies, durations)?

Future Limits??

Existing NPP-based Limits

EPA Priority Pollutant List:

- Metals ٠
- Cyanide ٠
- Ammonia •
- Total suspended solids (TSS) ٠
- Biochemical oxygen demand (BOD)
- Any other constituent on Priority Pollutant List (phenol, BTEX, etc.)

Plant Specific Parameters:

- Total Kjeldahl nitrogen
- Phosphorus ٠
- FOG •
- Total petroleum hydrocarbon (TPH) ٠
- TDS
- Calcium •
- Other CECs for enhanced source • control

- Capacity of WRF to take intermittent discharges
- Existing NPP limits and anticipated future limits
- Maximum allowable contaminant concentrations in their discharge

A mutual understanding of objectives, constraints, and flexibilities across municipal and industrial perspectives provides:

- A shared appreciation for the community benefits enabled by each
- A foundation for collaborative solution development

Any potential for mutually beneficial projects?

How do the anticipated benefits and burdens of a project compare across perspectives?

Can a "flexibility" on one side be leveraged to further achieve an objective on another side?

Are any objectives conflicting? Are any aligned?

What data /

information needs

to be requested?

Collaborative Solution Development

Collaborative Solution Development

Site-specific contaminant analysis

Operational Changes, Internal BMPs

Solution:

Site-specific definition of positive water stewardship; win-win strategy development

The Situation

- Multiple mega-industrial projects locating in southeastern US
 - EV batteries
 - Solar panels
 - Large scale food
 - 2nd tier industries to support the mega projects
- Most of the developers want water and wastewater "as a service"
 - Minimize their capital investment/ deploy capital into production
 - Avoid having the industry operate water assets
 - It's a negotiating point in siting these large developments

New industries brought new challenges

• The community's sewer use ordinance was based on industry pretreating their own wastewaters

Wastewater discharges between three hundred (300) mg/L and eight hundred fifty (850) mg/L of BOD will be assessed a surcharge. Enforcement shall be initiated for BOD discharges exceeding eight hundred fifty (850) mg/L. Wastewater discharges between three hundred (300) mg/L and one thousand five hundred (1,500) mg/L of TSS will be assessed a surcharge. Enforcement shall be initiated for TSS discharges exceeding one thousand five hundred (1,500) mg/L. The purpose of the surcharge is to encourage treatment of wastes rather than relying on the POTW to handle excess

- BOD and/or TSS, and to require industries generating high strength waste to bear the cost.
 - Want to minimize pretreatment in their facilities
 - Discharge wastewaters with treatment challenges that are NOT BOD or TSS

Collaborative Solution Development Enables a Long-term "Yes"

- Situation
 - Solar panel manufacturer 2.5 to 3.6 MGD
 - First submittal focused on sewer use ordinance parameters (BOD, TSS)
 - The challenges were very different

Collaborative Solution Development Enables a Long-term "Yes"

- Situation
 - Multiple industries try
 - Intention is to pretre

City enabling behavior

- City wants to say "yes"
- Communicated with economic development agencies
- Took the time to really understand industry needs and loads
- Revised headworks analysis to better define interim and long-term capacity

Industry enabling behavior

- Dug deeper to better define loads over time
- Transparently communicated constraints, as well as flexibilities
- Considered product substitutions and treatment changes

Collaborative Solution Development Enables a Long-term "Yes"

- Interim AND Long Term Limits
- Modified operation of current WRF to accept higher initial nitrogen loads
- Fast track facility plan and design for expansion

Development is usually driven by

- Access to skilled labor
- Low-cost land
- Transportation advantages
- Low-cost natural resources
- State and community incentives
- Developers frequently address water needs late in their siting studies

Tactics	Best practices
Understand the industry's needs	 Know how the industry uses water/ creates wastewater Engage early with the development team AND stay engaged
One Water/ One Community approach	 Approach developer as a united community, aligned with economic development plans Look for synergies
Know your system	 Know what your capacity is and what your constraints are Avoid development that is not a good fit
Fill your "proactive gaps"	Early permittingPre-development capital

Source Control May be Best Implemented as a Hybrid Solution

HRSD's PFAS and 1,4-Dioxane Management Plan for SWIFT

Source Control May be Best Implemented as a Hybrid Solution

HRSD's PFAS and 1,4-Dioxane Management Plan for SWIFT

Take Home Messages

Source control is a moving target; must consider current and potential future water quality targets, treatment sensitivities, and dischargers

A mutual understanding of municipal/industrial objectives, constraints, and flexibilities can serve as a foundation for collaborative solution development

Collaborative solutions should prioritize net benefit and then use stakeholder-specific benefits/burdens to inform cost share

Source control may best be implemented as a hybrid solution

Michael A. Smith, PE National Food & Beverage Lead Hazen and Sawyer masmith@hazenandsawyer.com Bob Weinschrott Industrial Water Practice Leader Hazen and Sawyer rweinschrott@hazenandsawyer.com