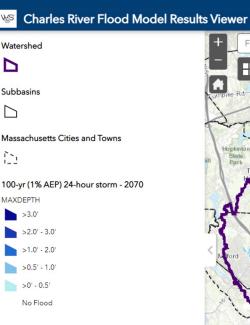
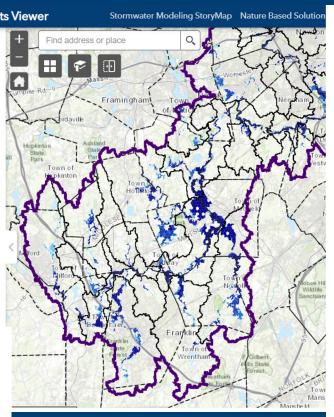


2024 NEWEA Spring Meeting

Indrani Ghosh, Ph.D.


May 22, 2024 Newport, Rhode Island

Charles River Flood Model



Charles River Watershed Association

Congratulations!

Partially funded by Massachusetts Municipal Vulnerability Preparedness (MVP) Program Action Grant

PROJECT TEAM:

Arlington Belmont **Boston** Brookline Cambridge **Dedham** Dover Franklin Medfield Medway Millis Natick Needham Newton Sherborn Waltham Watertown Wellesley Weston Wrentham

Presentation Outline

- Our Approach
- **Public Engagement**
- Model Development
- Flood Risk Results
- Flood Mitigation Solutions
- **Next Steps**

Climate change isn't coming —it's here.

Godfrey **Brook, Milford**

Photo by Yari Korchnoy

99 Linden St., Waltham

Mill River, Norfolk

Charles River, Newton

Our Approach

How do we plan for what's coming if we don't know what's coming?

- In Massachusetts, land use decisions are almost exclusively made at the local level.
- The Charles River watershed, just 308 square miles, includes 35 different municipalities, that is 35 different decision making processes
- The watershed scale is the most appropriate geographic scale to consider when investigating precipitation-based flooding impacts.
- Taking a watershed view provides the opportunity to equitably address **flooding** concerns by considering upstream impacts on downstream communities.

Community Engagement

Lower

River

2021 (Phase I)

Upper Charles River **VIRTUAL!!**

COVID Pandemic Virtual, regional events

Middle

Charles

River

MEETING THE MOMENT

2022 (Phase 2)

Re-emergence / **Cautious connection**

Return to in-person; already existing events; local approach 2023 (Phase 3)

Invited to and presented regional conference -**Cross-pollination!** Learning from others!

Partnered with language services and provided support for 10 events (in-person, virtual, translated materials)

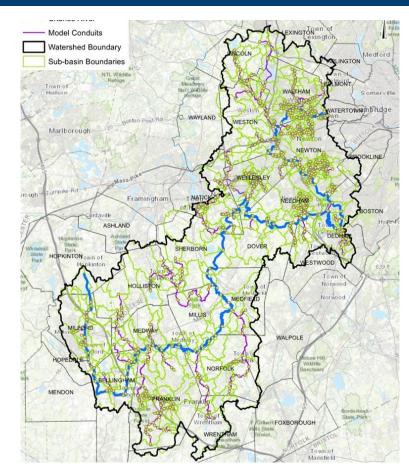
> Expansion / **Exploration**

New partnerships, methods, events; Cross-watershed collab

Model Development

1 Dimensional Framework

Generate runoff; convey non-flood flows


272 square miles of the watershed

Over 1,400 junctions

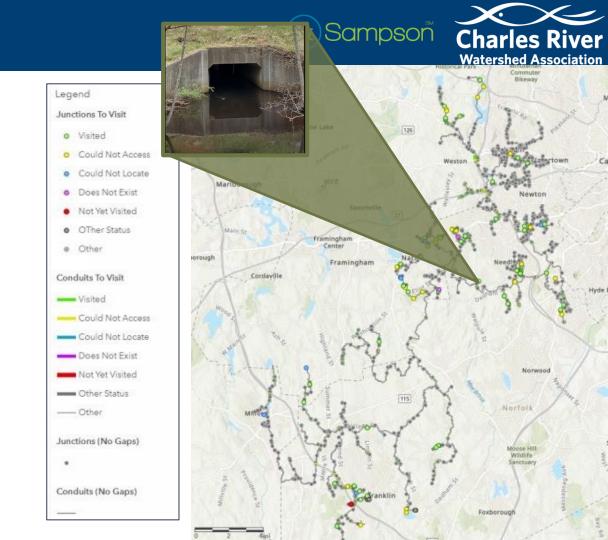
1,279,838 LF of dams, culverts, bridges, crossings, drains, overtopping conduits modeled

Over **700** sub-catchments

Over **30** storage volumes

Field Verification

6 days of site visits


119 junctions/nodes

25 dams

298 crossings

442 structures field verified

Used ArcGIS Collector App to record notes, measurements, and take photos

Model Development

Charles River Watershed Association

2 Dimensional Cells

7,748 – 2D cells created from LiDAR

Identify appropriate resolution

Convey flood flows; provide floodplain storage

Define boundary areas

Model Calibration

Calibrated to the March 2010 Storm

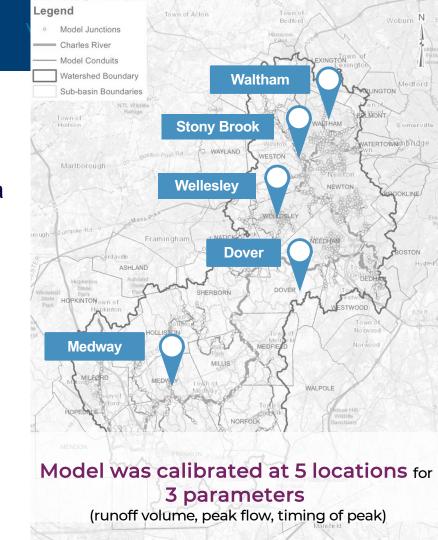
Based on 15-min data from the USGS gage on Stony Brook Approximately a

8.99 inches

Peak intensity

65-yr

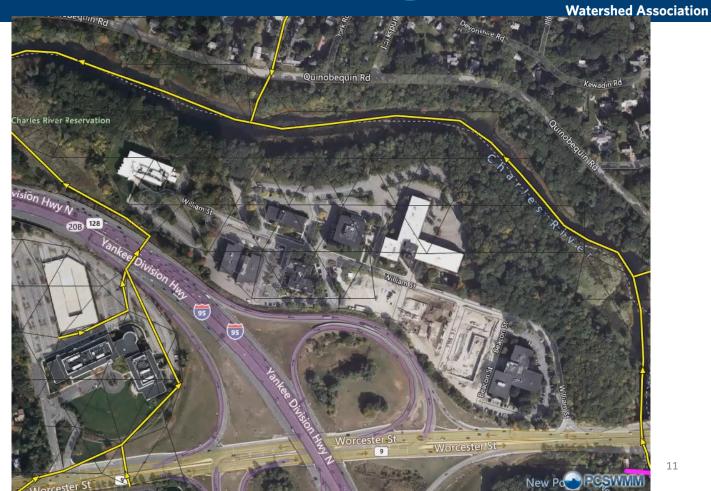
58.5 hrs



0.68 in/ hr

48-hr event

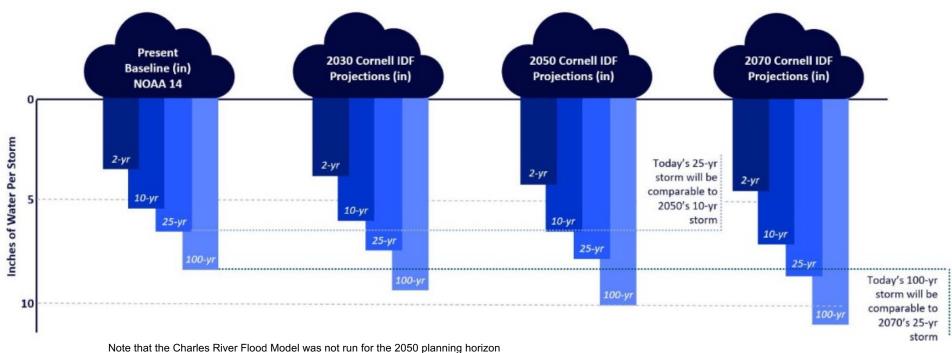
Flooding was close to **100-yr** or even worse in places due to the saturated ground, preceding rainfall, and snowmelt



Model Calibration

Weston & Sampson Charles River

2D Flood Model Results -William St, Wellesley



Results

Note that the Charles River Flood Model was not run for the 2050 planning horizon

Just a few more inches of rainfall could increase the Charles River's volume by millions of gallons during a heavy storm.

Projections developed by Cornell University for EEA's Massachusetts Climate and Hydrologic Risk Project, integrated into EEA's Climate Resilience Design Standards Tool (version 1.2)

Results

Model Results: 100-year Storm Comparison

Legend

10-yr (10% AEP) 24-hr storm Max Depth

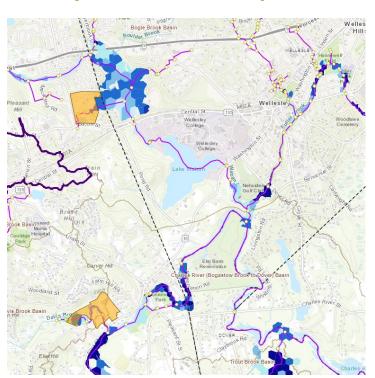
>3.0'

>2.0' – 3.0'

>1.0' – 2.0'

>0.5' – 1.0'

>0' - 0.5'


No Flood

Model Conduits

Watershed

Subbasins

All Site Parcels

100-Year Storm, Present Day

8.19 inches

in 24 hours

IMPACT

11,991 acres of flooding

18,644 million gallons (MG) of runoff

61 critical facilities

100-Year Storm, 2070

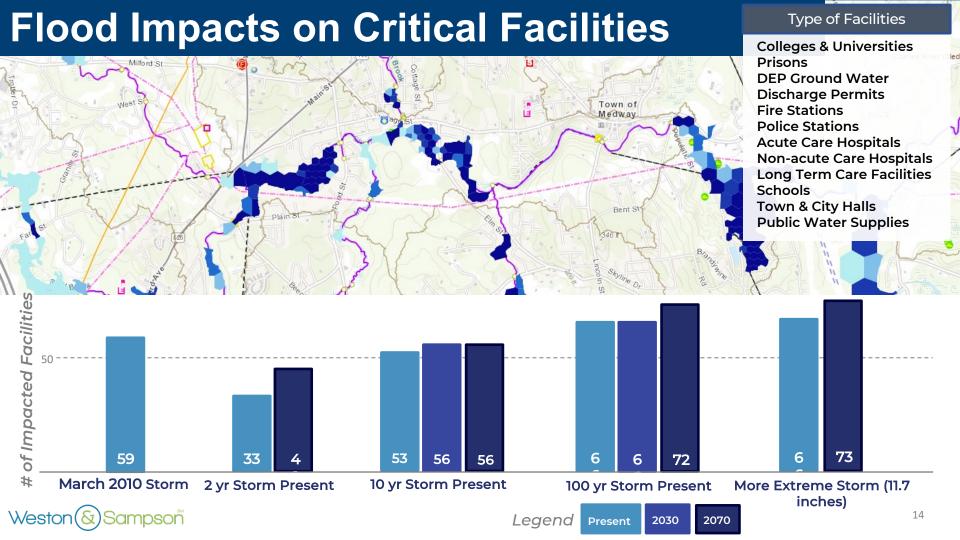
11.11 inches

in 24 hours

IMPACT

14,605 acres of flooding

29,925 million gallons (MG) of runoff


77 critical facilities

100-yr Storm Present (8.2 inches in 24 hrs)

March 2010 Storm (8.99 in)

10,446 acres of flooding

20,831 MG of runoff

Climate Impacts to Solutions Veston & Sampson

BY 2070, A 100-YEAR STORM WOULD CAUSE:

100-year storms have a **1% chance** of occurring every year.

increase in runoff + 11 inches of precipitation

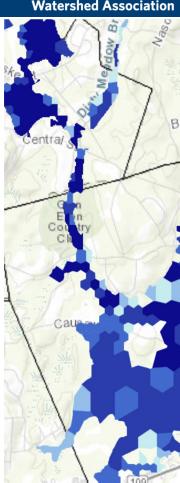
2,600+

acres that don't currently flood to see severe flooding

50+

critical facilities like hospitals, schools, + highways impacted

BUILD GREEN INFRASTRUCTURE


INCREASE TREE
CANOPY

PROTECT & RESTORE WETLANDS

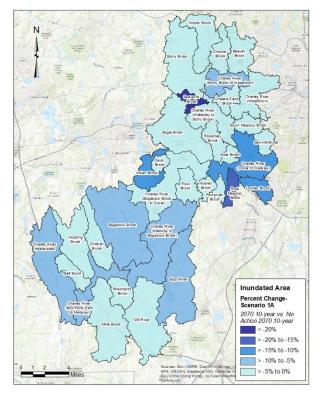
CONSERVE OPEN SPACE

Watershed-Wide Nature Based Solutions

Category	Scenario Number	Suggested: Phase 2	
Green Stormwater Infrastructure	1A 1B	GSI stores the 2-yr event (4.5 inches) from 50% of all impervious area Target all large buildings & parking lots (public & private) for rooftop infiltration/disconnection (>5 acres) to store the difference between the (2070) 25-yr & 2-yr	
Reduce Impervious Cover	2	25% reduction	
Upland/Pond Storage	3	Add sites (14 sites, >20 ac.) & increase storage volume	
Wetland Restoration	4	Increase wetland area around existing wetlands; increase of 20%	
Land Conservation	5A	15% of remaining undeveloped/ unprotected land is developed	
Regulatory	5B	Store the difference between (2070) 25-yr & 2-yr for 50% of assumed "new development"	
Dam Removal	Alt B	Remove all dams other than active flood control (just remove recreation dams)	

GSI = Green stormwater infrastructure

Watershed-Wide Nature Based Solutions

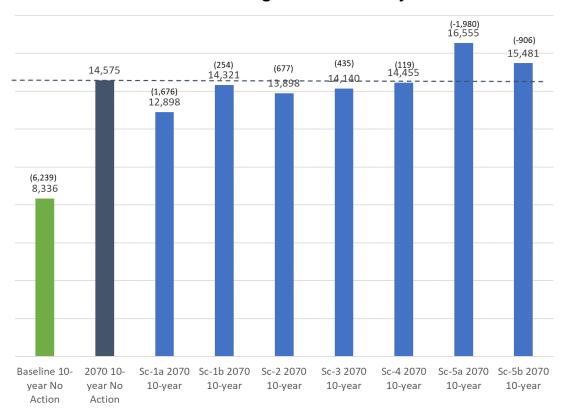

Scenario 1A:

Use green stormwater infrastructure (GSI) to store the 2070 2-year storm (4.5") runoff from 50% of all impervious cover

Climate Scenario	Percent Change in Watershed-wide Total Runoff Volume (MG) between Scenario 1A and No Action		
	2-year event	10-year event	
Baseline (Present Day)	-47%	-20%	
2070	-26%	-12%	

This strategy is likely to mitigate:

- Approx 1,600 MG of flooding for the present day (baseline) 2yr storm
- Approx **1,660 MG of flooding** for the 2-yr storm by 2070


Figure: Map of the percent decrease in inundation area for Scenario 1A during the 2070 10-year event versus a No Action condition, by subbasin.

Summary of Watershed-Wide Strategies

Total runoff volume during the 2070 10-year event

Building Resilience Across the Watershed

Site-scale Results

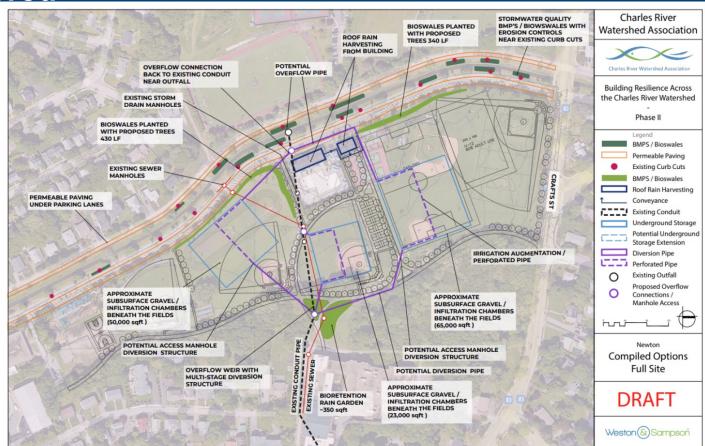
Tier 1

- Site Feasibility
- Flood Reduction
- Community Support

Tier 2

- Biodiversity
- Recreation
- Permitting Feasibility
- Regional co-benefits

Example Priority Site -Solutions Explored

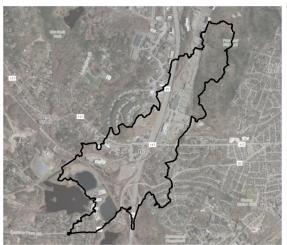


Albemarle Field, Newton Large athletic field/recreation complex for soccer, baseball, tennis and basketball.

Potential: Underground and surface storage, with stream buffer improvements

- Diverting stormwater from an existing conduit
- Sub-surface gravel infiltration chambers beneath the playing surfaces
- Bioswales with trees




Priority Impact Areas

Upper & Lower Watershed Priority Impact Areas

Milford

Waltham/Weston

CURRENT PRIORITY PROJECTS:

WALTHAM

Restoring wetlands in Hardy Pond to store floodwaters in extreme weather and designing green infrastructure, infiltration, and de-paving in the priority impact area of west Waltham.

NEWTON

Building green infrastructure + infiltration chambers on Albemarle Field to reduce flash flooding of nearby channelized stream, Cheesecake Brook

WESTON

NATICK

Constructing infiltration chambers, adding rain gardens, and restoring wetlands to prevent future flooding at Natick High School.

MEDWAY

Building green infrastructure + flood storage in Oakland Park to build climate resilience. restore groundwater, and reduce flooding.

MILFORD

Maximizing benefits of protected open space, constructed wetland, stream restoration, de-paving, and permeable pavement in the priority impact area of north Milford.

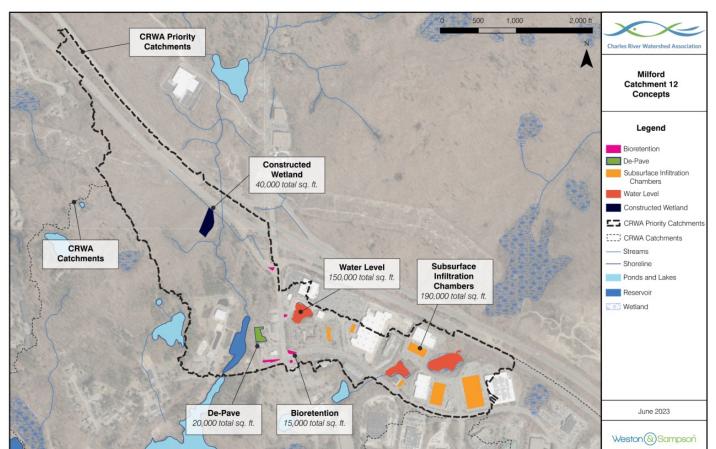
Approach to Choosing Solutions

BUILD GREEN INFRASTRUCTURE

INCREASE TREE CANOPY

PROTECT & RESTORE WETLANDS

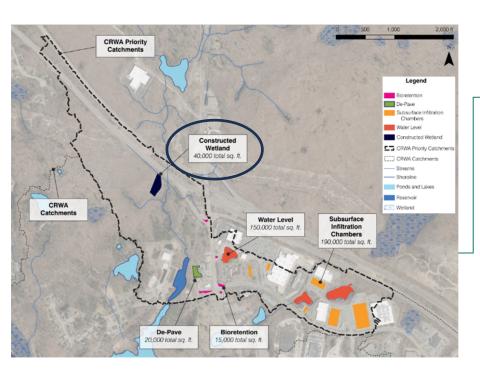
CONSERVE OPEN SPACE


In developing concepts for Impact Areas and Priority Sites, the goal was to maximize the potential use of nature-based solutions and green stormwater infrastructure (beyond "maximum extent practicable").

As we received feedback from municipal staff and the public, constraints and limitations that would affect implementation were conveyed, and concepts were updated accordingly.

Upper Watershed Impact Area

Solutions Explored


- Subsurface infiltration and storage underneath parking stalls
- Retrofit stormwater ponds to increase capacity
- Stream restoration
- Bioretention
- Approx. 9.5 ac available in the catchment area where NBS/GSI can be implemented

Upper Watershed Impact Area

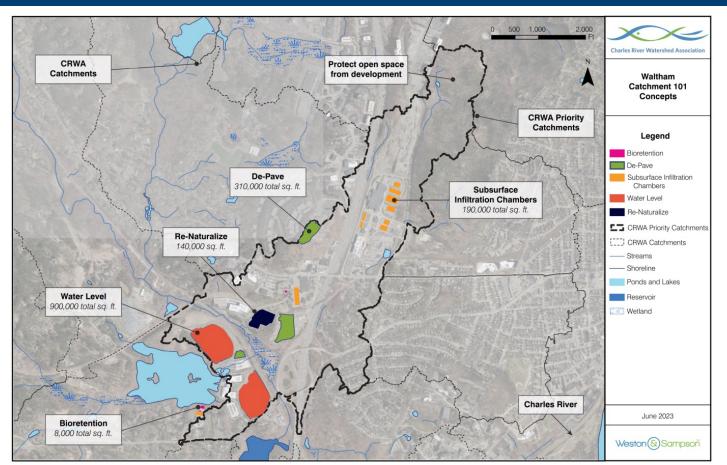
Opportunities

Increase storage and restore natural conditions

Source: Google Earth

Constructed Wetland

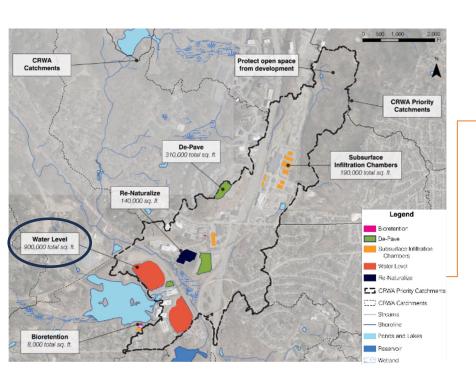
Source: U.S. EPA


Stream Restoration

Source: Weston & Sampson Project with the Town of Arlington

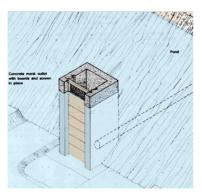
Lower Watershed Impact Area

Solutions Explored


- Subsurface infiltration and storage underneath parking stalls
- Retrofit stormwater ponds to increase capacity
- Stream restoration
- Approx. **35.5 ac** available in the catchment area where NBS/GSI can be implemented

Lower Watershed Impact Area

Opportunities


Retention Pond Retrofit

Source: Google Earth

Increase storage by excavating existing basins

Source: U.S. EPA

Example of outlet control

Source: U.N. Food and Agriculture Organization

Results of Modeling

Impact-area concepts showed great benefits

- For the 2070 10-year storm, proposed solutions for the impact area (catchment) are able to reduce flooding by almost
 - 3.7 MG in the upper watershed area
 - 6.4 MG in the lower watershed area

 These targeted proposed solutions resulted in a greater flood reduction benefit for this catchment compared to overall watershed-wide scenario 1A (GSI to store 4.5" of rain from 50% of impervious cover)

Benefits and Co-Benefits

- Improved water quality
- Community education / STEM resource
- Create outdoor spaces (a.k.a. "placemaking")
- Less-intense and more frequent storms can be managed
- Reduction in "heat islands" in parking lots and paved areas
- Addition of vegetation and potential creation of habitat

Summary of Accomplishments to Date

- Developed CRFM: covering nearly 300 square miles
- Over \$1M obtained in state funding
- \$400,000 obtained in federal funding
- 9 no action (present & future) storm scenarios run
- 8 intervention/"action" scenarios
- Published Charles River Climate Adaptation Flood Mitigation Implementation Plan, working on first update
- Concepts designs for 8 priority sites and two subwatersheds
- Additional funding (nearly) secured to advance designs at one priority site
- Semi-annual public webinars which engage over 100 people live, more via recordings
- Multilingual presentations, materials, and in person events

FLOODING IN NATICK

How are we Impacted?

Present: 10-year storm (50% chance of happening any year with current climate)

2070: 10-yr storm (1% chance of happening any year with climate change)

ne Town of Natick is collaborating with the Charles River Watershed Association and local organizations to create tools and resources that help residents respond including flood mapping and nature-based solutions!

The Charles River Flood Model (CRFM)

A watershed-scale simulation developed with cities and towns of the Charles River Climate Compact and technical partner Weston & Sampson.

It shows how increased precipitation and inland flooding caused by climate change will affect our communities and tests out flood mitigation solutions.

Nature-Based Solutions (NBS)

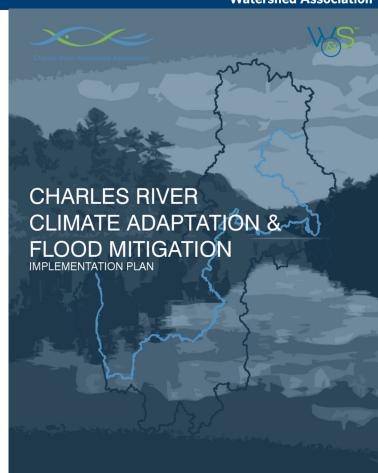
Adaptation measures that protect, restore, and/or manage ecological systems to safeguard public health, provide clean air and water, increase natural hazard resilience, and sequester carbon.

The Charles River Watershed Association uses the CRFM to assess the effectiveness of NBS on flooding

SCAN HERE to learn more about CRFM and nature-based solutions being implemented throughout the watershed!

This work is partially funded by the MA MVP Action Grant program.

Watershed


Looking Ahead...

WHAT'S NEXT:

- Building on past modeling work, use the CRFM to identify and assess various alternative "pathways" that will mitigate flooding down to present day levels or even further
- Update the Charles River Climate
 Adaptation Flood Mitigation Plan to
 include additional site scale / impacted
 area project concepts, flood reduction
 alternatives analysis, and additional
 community input

