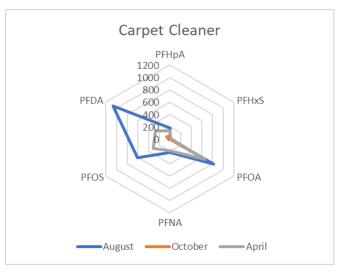
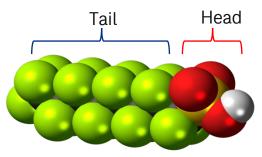
The Impact of PFAS on Water Reclamation Facilities

Current Regulatory Trends and How to Prepare

Eric Spargimino, PE, PMP, LEED AP

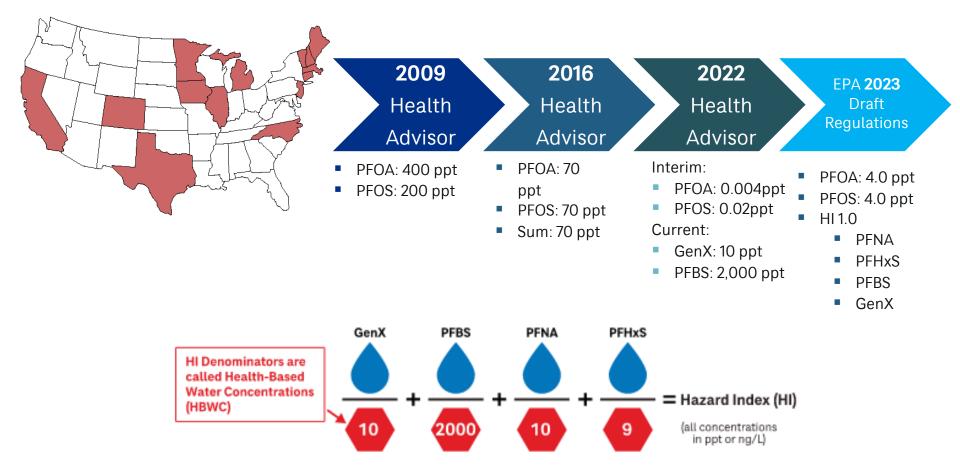
January 22, 2024

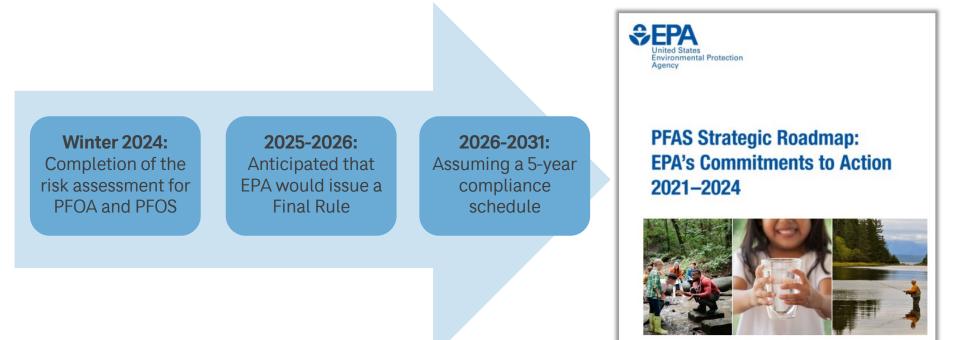




2024 Annual Conference & Exhibit January 21-24 | Boston

Regulatory Environment


- PFAS within Water Reclamation Facilities
- Source Reduction
- What should we do?


Regulatory Environment – Drinking Water

Regulations are <u>rapidly changing</u>; States in <u>red</u> have either guidance, notification limits OR MCLs in place for PFAS.

CDM Smith

EPA PFAS roadmap for biosolids

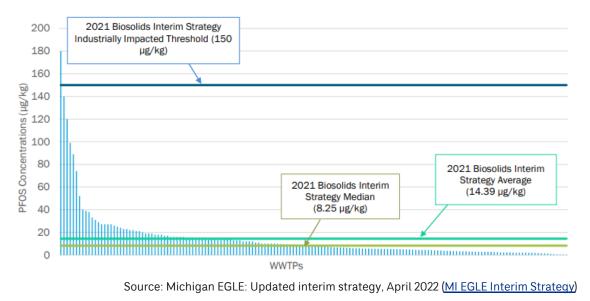
The risk assessment will serve as the basis for determining whether regulation of PFOA and PFOS in biosolids is appropriate

State Regulations

PFAS – Regulatory Actions

Authority	Compound	Effect	
ΕΡΑ	PFOA & PFOS	Actively conducting risk evaluation of PFOA & PFAS in biosolids. Anticipated completion Q4 2024.	
California	30+ PFAS compounds	General Order - Monitor Only	
New Hampshire	100+ CECs	Monitor Only	
Massachusetts	PFHxS, PFNA, PFOA, PFOS, PFHpA, PFDA (AOF)	Monitor Influent, Effluent and Biosolids	
Maine	All PFAS Compounds	Prohibit land application of biosolids	
Michigan	PFOS	 Developed interim land application plan with limits: >125 ug/kg – Industrially impacted/no land app. 50 – 125 ug/kg – reduce land app. rate to 1.5 dt/acre <50 – normal application rate (20 to 50 ug/kg – investigate sources) 	
Pennsylvania	PFOA & PFOS	Proposed Monitor Only (Anticipated Fall 2023 implementation)	

State Regulations


PFAS – Regulatory Actions

Authority	Compound	Effect	
Colorado	40 PFAS compounds	Source control program and monitoring	
Vermont	PFOA & PFOS	Monitor Only	
Minnesota	PFAS compounds	Monitor Only	
New Jersey	PFOA & PFOS	Monitor Only	
New York	PFOA & PFOS	Developed interim land application plan with limits (May 2023): • >50 ug/kg – prohibited land application • 20 – 50 ug/kg – restricted land application • <20 – No action required	
Connecticut	PFOA, PFOS, PFNA, PFHxS, PFHpA	Suggested land application limits: • Combined concentration of >1.4 ug/kg - no land app.	

Michigan EGLE – Biosolids Land Application Interim Strategy

- PFOS > 125 μg/Kg (ppb)
 - No land application allowed.
 - Investigate source reduction
- PFOS > 50 μg/Kg (ppb)
 - Land application allowed
 - max 1.5 dt/acre
 - Investigate source reduction
- PFOS < 50 μg/Kg (ppb)
 - Land application allowed
 - If PFOS > 20 ppb, consider investigating sources

Strategy effective July 1, 2022

EPA is reportedly adopting this strategy!

Other PFAS Actions and Regulations

- Other State Actions
 - Vermont Agency of Transportation (VTrans) disallows use of Biosolids, revoked.
 - Arizona biosolids prohibition, revoked
 - MA S-2053 "An Act Establishing a Moratorium on the Procurement of Structures or Activities Generating PFAS Emissions" – Referred to Senate Ways and Means
 - Local requirements for testing of water in connection with sale of a home: CT and Nantucket, MA
- Canada:
 - March 2023 Quebec Government announces temporary moratorium on the import of Biosolids from the US.
 - May 19, 2023 Notice to Industry, proposed interim standard for PFAS in Biosolids (50 ppb PFOS)
 - 60 day public consultation seeking comments on proposed standard for important biosolids. Ends February 20, 2024
 - <u>https://inspection.canada.ca/about-</u> <u>cfia/transparency/consultations-and-engagement/interim-</u> <u>standards-for-pfas/eng/1702575266741/1702575267417</u>

MassDEP

Quarterly reporting of influent, effluent and biosolids

PFHxS

PFNA

PFOS

PFOA

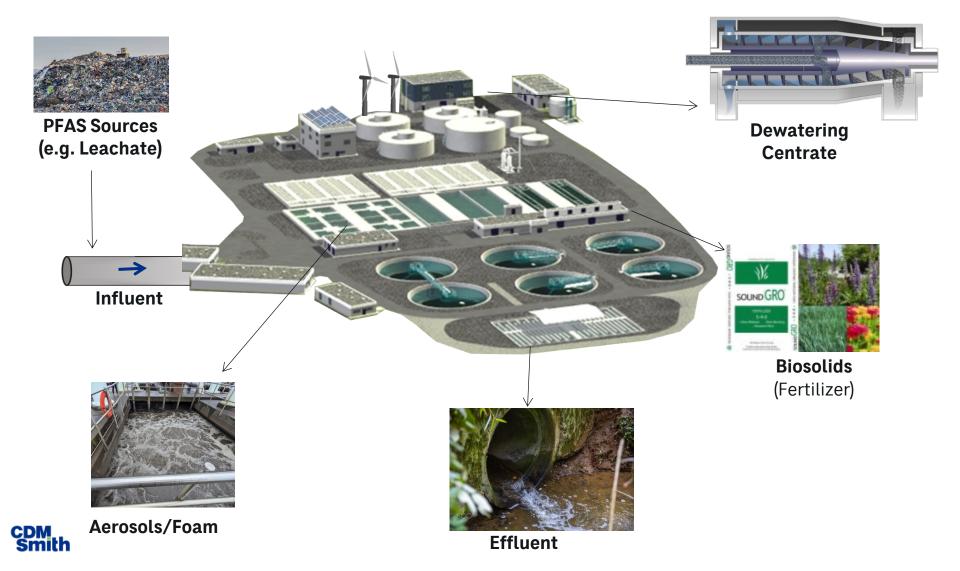
PFHpA

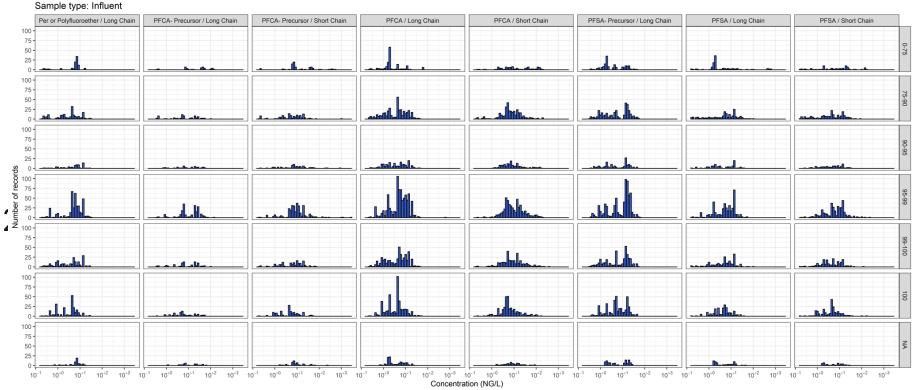
PFDA

6 months after approved method available

Requiring AOF sampling & not renewing some AOS permits

CERCLA Rule

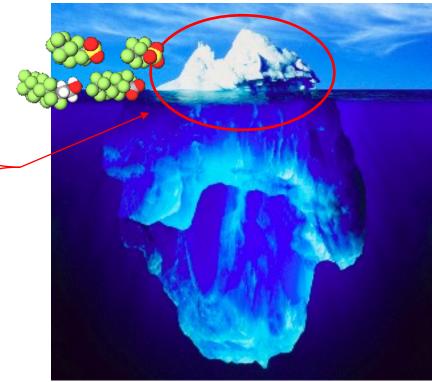

- Proposed hazardous substance designation of two PFAS under CERCLA
 - Perfluorooctanoic acid (PFOA)
 - Perflourooctanesulfonic acid (PFOS)
- Reporting requirements for release of 1 pound or more of PFOA or PFOS in a 24-hour period
- Most WRRF will not exceed this reportable quantity (RQ)
 - 10 mgd x 12,000 ng/L x (8.34/10⁶) = 1 lb/day
- Longer term impacts as Potentially Responsible Party (PRP) most concerning for utilities
- <u>Reportable Quantity Calculator:</u> <u>https://www.nacwa.org/Login?ReturnUrl=/issues-in-</u> <u>depth/reportable-quantity-calculator</u>


Occurrence, Fate & Transport

Where are the opportunities to cost effectively remove PFAS?

California Association of Sanitation Agencies (CASA)

NA: Residential flow contribution unknown

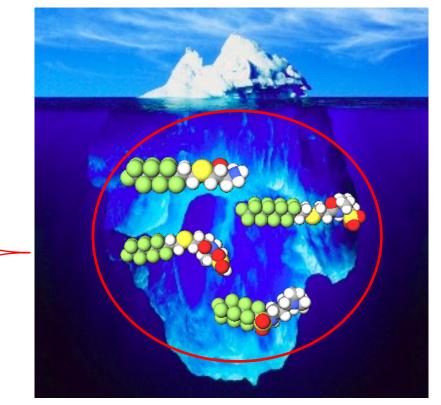

Laboratory Analysis

Targeted Analysis

Methods to Detect Target Polyfluoroalkyl substances

- USEPA Method 537.1
 - 18 PFAS (12 PFAAs + 6 Other PFAS Including GenX)
- USEPA Method 533
 - 25 PFAS (16 PFAAs + 9 Other PFAS Including GenX)
 - Focuses on Short Chain
- Draft Method 1633 for 40 PFAS
- DWI 47 PFAS

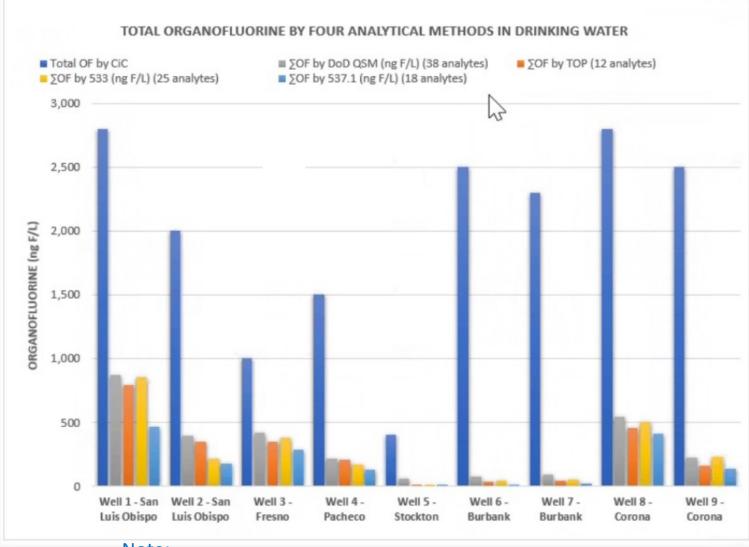
Property of CDM Smith, all rights reserved



Laboratory Analysis

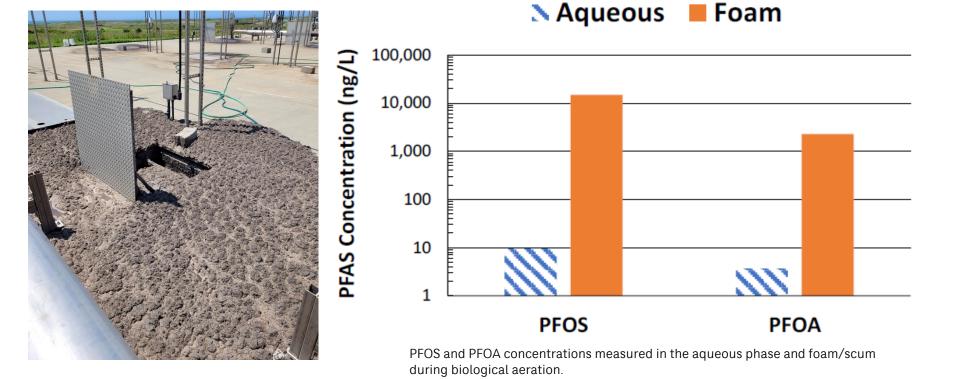
Non-Target Analysis

Methods to Detect Non-Target Polyfluoroalkyl Substances


- Total Oxidizable Precursor (TOP) Assay
 - Converts Precursors to PFAAs so can detect chain lengths of precursors
- Total/ Adsorbable/ Extractable Organic Fluorine by combustion ion chromatography (e.g. USEPA 1621)
 - Mutiple organofluorine compounds that can be present / extracted
- High Resolution Mass Spectrometry

Property of CDM Smith, all rights reserved

California Waterboards Non-Target Analysis of PFAS



Note:

Ultrashorts PFAAs such as TFA not detected using AOF using USEPA 1621

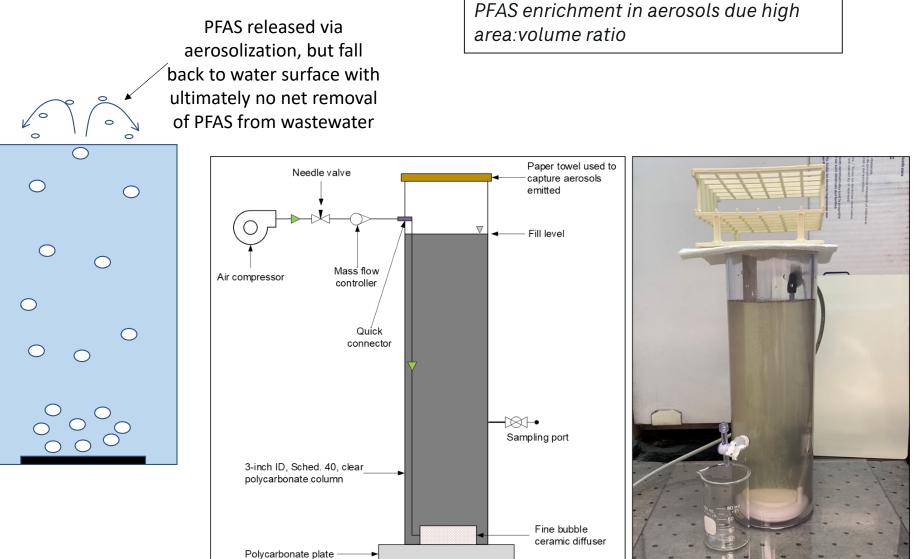
https://www.youtube.com/watch?v=pGtg26tN4PM&t=12345s

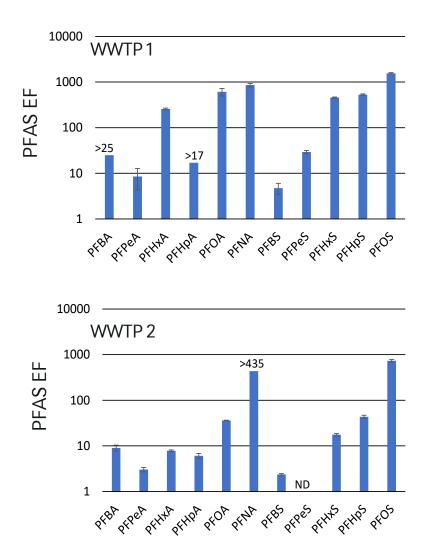
PFAS in Foam vs Aqueous Phase

WWTP Aeration Basins: Foam Formation & PFAS

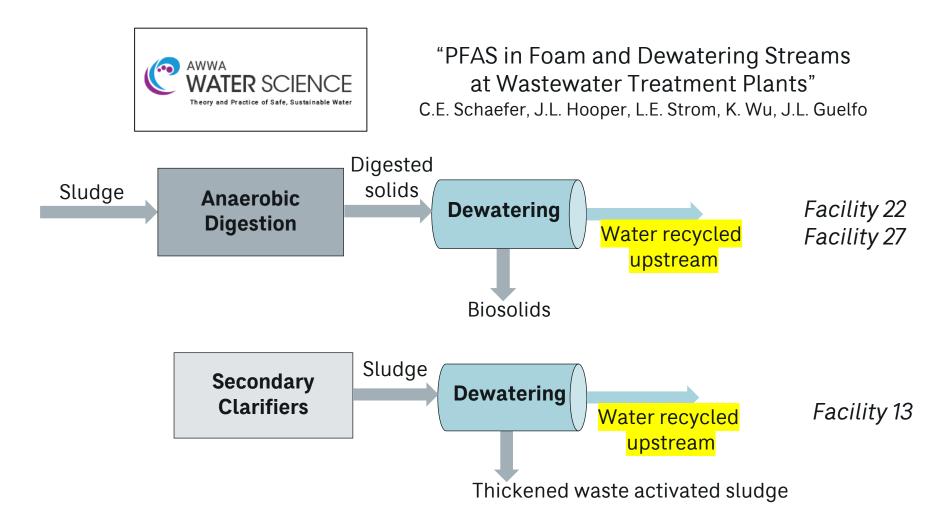
At 2 WWTPs:

- Collect wastewater entering aeration basin and analyze for PFAS
- Collect foam, then analyze the re-collapsed foam for PFAS
- Calculate PFAS enrichment factors

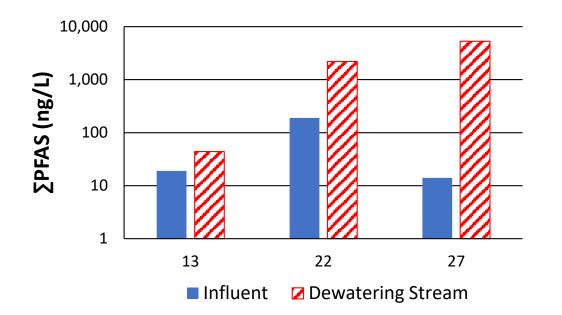

$$EF = \frac{C_f}{C_w}$$


"PFAS in Foam and Dewatering Streams at Wastewater Treatment Plants" C.E. Schaefer, J.L. Hooper, L.E. Strom, K. Wu, J.L. Guelfo

Potential Role of Aerosols

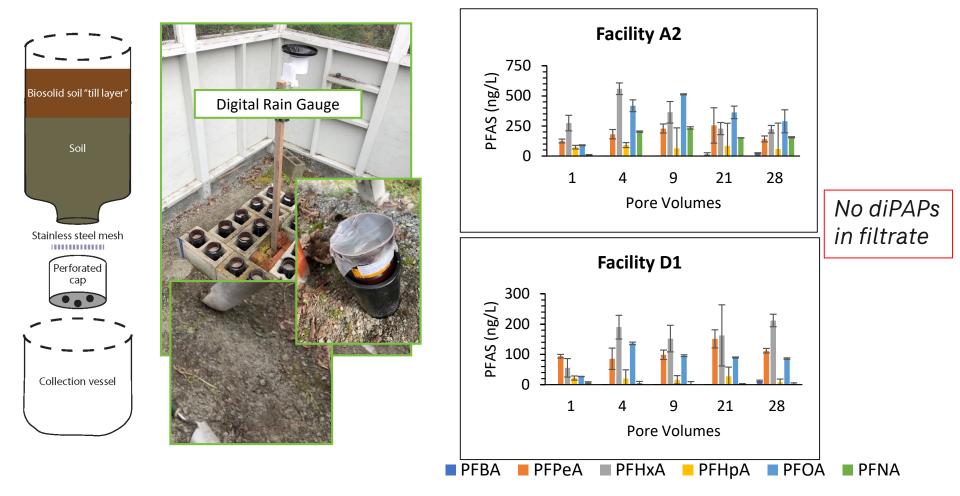


WWTP Aeration Basins: Foam Formation & PFAS

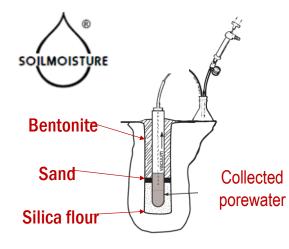


- Substantial PFAS enrichment
 - Up to 14,900 ng/L PFOS in foam
 - Up to 7,040 ng/L 5:3 FTCA in foam
- Enrichment Factor (EF) increases with increasing perfluorinated chain length
- No significant decreases in PFAS upstream and downstream of aeration basins
 - PFAAs in foams represent ~0.1% of PFAA mass
 - Should foam extraction be considered?

WRF 5031: Solids Dewatering


PFAS Phase Behavior Through Dewatering

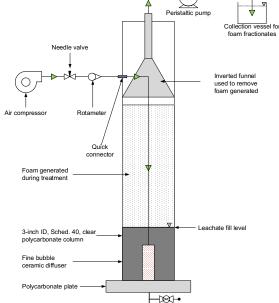
- For facilities 22 and 27, PFAS in dewatering streams primarily FTCAs (*diPAP transformation product*)
- diPAPs in facility 27 biosolids 5-times greater than in facility 22

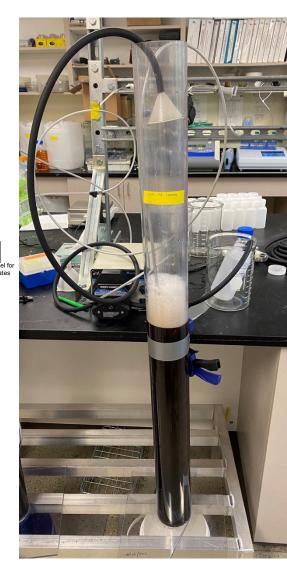

ΣPFAS in dewatering stream (ng/L)	Facility	∑PFAS mass flow AnS in dewatering st NAM/TP V (g/day) aqueous influent (ng/L)	∑PIFIA-SSmaas sTido winn V Wd EI V atpr èng s inshn en t (gglei gy)	ΣPFAS mass flow in WWTP aqueous influent (g/day)
44 ± 5.8	13	$0.063 \pm 0.0894 \pm 0.24$	6.968 0:087 84	(0.1%) ^{6.9 ± 0.087}
2200 ± 120	22	$1.1\pm 0.06190\pm 15$	251 ±10406	(1.1%) 25 ± 1.4
5300 ± 560	27	$1.1 \pm 0.1214 \pm 1.1$	0.38 ± 0.042	(4.476) (290%) $.38 \pm 0.04$

PFAS Leaching from Biosolids: 6 Month Study WRF 5042

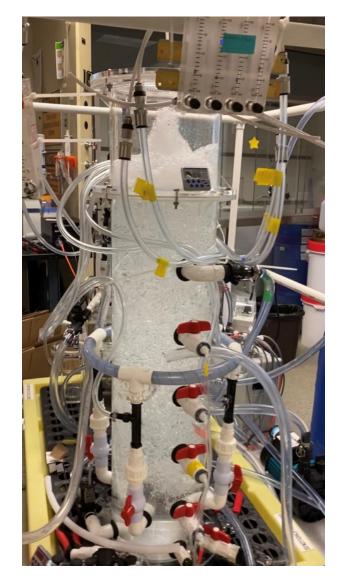
WRF 5214: PFAS Leaching through Soil

Lysimeters

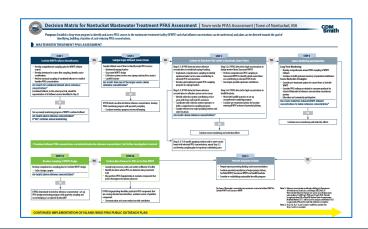

Source Reduction


Bench Scale Leachate Analysis

Simulation of a single stage of foam fractionation


- 3 test conditions:
 - As-is
 - With low (2 mg/L) CTAB addition
 - With high (5 mg/L) CTAB addition
- Collection of time-series samples
 - **T**0
 - T30 mins
 - T60 mins
 - T90 mins
 - Foam fractionate
- Testing in duplicate
- Laboratory analytical tools:
 - Target PFAS (1633)
 - TOP assay
 - AoF
 - Basic water quality parameters

3-way drain/sampling


Leachate Analysis Conclusions

- Bench results indicate that foam fractionation can be effective:
 - Multi-log removal of PFOA & PFOS
 - More difficult to remove short-chained PFAS
 - ~75% total target PFAS removal
 - Treated MassDEP's PFAS6 to <10 ng/L</p>
 - Good mass balance
 - PFAS concentrated by a factor of 50-75x through a single stage of foam fractionation
 - Represents ~5% of the total PFAS load to this WRF

What Should Utilities Do Next?

- Become familiar with local regulations, legislation and the implications of sampling.
- Develop a better understanding of mitigation opportunities in your community:
 - Upstream of WRF (i.e. SOURCE REDUCTION)
 - Within the WRF (Foam, Centrate, etc.)
- Work with your regulators and stakeholders so all parties can better understand the science of PFAS.
 - Be on the communication offensive, not defense.

Questions?

 Eric Spargimino CDM Smith 603-222-8366 <u>SpargiminoEM@CDMSmith.com</u>

https://www.linkedin.com/in/eric-spargimino-p-e-pmp-b3a3aa8/

Find more insights through our water partnership at cdmsmith.com/water and @CDMSmith

