The Dollars and Sense for Adopting Optimized O&M Processes **Leveraging Smart Technology**

Jay Boyd Director of Market Development

Hydraulic Model Cal

Agenda

Theme:

Optimize Collection System O&M Operations by Leveraging Proven, Smart Technology

A Little About ADS

Cleaning Practices & Their Issues

Defining Cleaning Optimization

Technology Supporting Optimization

Case Studies: Practical Examples & Results

Closing Thoughts and Q&A

ADS Overview

- Founded 1975 by former NASA R&D Director Peter Petroff
- The pioneer of the Digital Water Vision
- Awarded 25 national/international patents
- Firsts in Flow Monitoring...
 - 1st to Directly Measure Velocity & Using Doppler
 - 1st to employ Microprocessor-Based Systems
 - 1st to use Voice Grade Telemetry for Communication
- *Highly focused* on precision measurements

NASA R&D Director Peter Petroff establishes American Digital Systems

ADS Today

Success Achieved through *Comprehensive, Turnkey Services*:

- Design & manufacture meters/monitors/sensors
- Develop Software & Advanced Analytics
- Data Analytics Team
- Expert, Certified Field Services
- 300+ employees
- 29 Local Service Offices
- Concurrently manage >600 active projects
- Support >10,000 active meters

Calgary

ADS Application Focus

Collection System-Flow Data

- o I/I Assessment
- Capacity
- Model calibration
- Billing networks

Collection System-Level

- Cleaning Optimization
- SSO mitigation
- Lift station back-up
- By-pass monitoring

Storm/Surface Water-Level

- Flood-Prone Warning
- o River Levels
- o Tidal intrusion
- Reservoir/Lake levels

Rain Data

- **Cumulative**
- o Peak

Framing Today's Discussion

Cleaning Challenge

- Continuous, high-demand on resources
- Inconsistent remote site collection system visibility

Solution

- Optimization: *site condition-based cleaning* where:
 - Cleaning frequency is right-sized
 - SSOs threats are reduced

2

The Decades Old CMOM

<u>Capacity, Management</u> <u>Operations and Maintenance</u> (CMOM)

- Guidance for O&M *Best Practices*
- First established in 1995

CMOM Goal:

Prevent Sanitary Sewer Overflows SSOs

	102 F02-F-090		
<page-header><page-header><text><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></text></page-header></page-header>	<text><text><text><text><text></text></text></text></text></text>	A second	<text><text><section-header><section-header><text></text></section-header></section-header></text></text>

EPA Guidance Document: 'Collection System O&M Fact Sheet' *Sewer Cleaning and Inspection,* September 1999 Update

'Best Practices' for Cleaning

Basic Principle

- Prevent Overflows with Scheduled Cleaning
- Stay ahead of build-up cycles

Total Collection System Cleaning

• Continuous cycle: single to multi-year cycles

<u>High Frequency</u> Cleaning

- Frequencies: weekly, monthly, quarterly, etc.
- Where: historic *hot spots*

Cleaning Frequency & SSOs

High Frequency Cleaning...

High Frequency Cleaning is Challenging...

Keeping up with the schedule

- High frequency cleaning is relentless
- Competes with projects, emergencies

Cleaning to reduce SSO has diminishing returns

• Greater investments has lower returns

Hiring and labor availability is challenging

- Retirements accelerating in industry
- Smaller labor pools in most of US

Aging infrastructure *increases* maintenance demands

• Utilities may be forces to do more with limited resources

Quotes from Three Operations Experts

Revealing quotes by three 20+ year veterans...

"We're busy so who wants to clean already clean pipes?"

"The schedule says to clean but it doesn't mean it needs it."

"When you can't see what's going on, you clean to be safe."

Common Theme?

Overclean to be safe, even if wasteful

Root-cause? Site-conditions <u>not known</u> most of the time

Solution: Better visibility to site conditions

Creating a Better Future

"The most reliable way to predict the future is to create it."

Creating the Future

The Present The Future Schedule-driven cleaning Site condition-driven cleaning as needed Blind to remote site conditions See & know what's happening

Hallmarks of Optimization

- Promotes *informed decisions:* where to productively apply resources
- *Sustainable process* able to do more with lower resource demand
- Improves SSO protection
- Reduces asset wear eliminates unnecessary cleaning which may degrade the high-risk pipes
- Site condition-based cleaning *always on-time and right-sizes frequency...*

What We Are Achieving with Cleaning Optimization?

<u>Right-sized</u> cleaning frequency based on remote site conditions

Outcome: *lower* cleaning frequency and *better* SSO prevention

Smart Technology: Creating Remote Site Visibility

2nd Generation of Level Monitoring Technology Advancements

Multi-Segment Monitoring: Up & Downstream

Bi-directional Monitoring:

Downstream Blockage creates backwater condition & increases level

Upstream Blockage creates lower flow & decreases level

The Blockage Protection Continuum

Alarms: Reactive & Unplanned Response

The Blockage Protection Continuum

React or Predict?

Prioritized Dashboard Predicts Blockages

BLOCKAGE PRE	DICTION		Ξu×
Location 🔺	Date 🔺	Status 🔻	Depth Trend
MFLRD-02	02/28/2019	Δ	
MF01	02/28/2019	O	•••••••••
MF02	02/28/2019	Ø	~~~~~~~~~~~

Graph of Site Details: Detects Pattern Change

Subtle changes are detected by machine learning

Algorithm uses *pattern recognition*

Expert reviewed data teaches the software

System distinguishes RDI/I vs. blockage

How Machine Learning Detection Works: Example 1

Software "machine learning" uses 1 million days of reviewed data to recognize anomalies

Example 1 Site Findings

Gravel and Rocks Observed in Manhole Channel

Cleaning pushed debris to next segment

Machine Learning Detection: Site Example 2

Example 2 Site Findings

Stick catching debris Stick created progressive blockage

$$6 -$$

Case Study: La Mesa, CA

Situation

System 153 miles sewer, 53 miles storm

ProcessAnnually: Total System CleaningMonthly: 100 High Frequency sites cleaned

Challenges80% maintenance time spent cleaningDifficult to address project, emergencies

Optimized Cleaning Study

Scope

• Ten (10) monthly cleaning segments monitored for six (6) months

• *Site conditions* communicated, software alerts & prioritizes

• Cleaning instances recorded and viewable via cloud-based software

Typical Diurnal Patterns

Segments Requiring Action

Stable depths Months 1 & 2 Month 3 depth increases at two locations

Action: clean

Take Away: optimization does not eliminate but right-sizes cleaning

Tabulated Results

Green = Not cleaned

Red = Cleaned

	Jul	-18	Aug	;-18	Ser	p-18	00	rt-18	Nov-	18	Dec-18	
Site Location	Clean?	Туре	Clean?	Туре	Clean?	Туре	Clean?	Туре	Clean?	Туре	Clean?	Туре
70thSt	No		No		No		No		11/26/18		No	
Colorado	No		No		No		No		11/26/18		No	
EchoDr	No		No		9/17/2018	Grease	No		11/26/18		No	
HarbinsonAve	No		No		No		No		11/26/18		No	
JessieAve	No		No		9/11/2018	Grease/Roots	No		11/26/18		No	
JulliettePl	No		No		No		No		11/26/18		No	
LakeMurray	No		No		No		No		11/26/18		No	
NeboDr	No		No		No		No		11/26/18		No	
PanormaDr	No		No		No		No		11/26/18		No	
PineSt	No		No		No		No		11/26/18		No	

Monthly Results

Month 1:0 cleanedMonth 2:0 cleanedMonth 3:2 cleanedMonth 4:0 cleanedMonth 5:10 cleanedMonth 6:0 cleanedTotal12 cleaned

Summary for Six Months

۲

- Expected: Clean 60x (6 months x 10 sites)
 - Actual: Clean 12x*
- Reduction: 48 cleanings (80%)

*Note: November all sites cleaned without necessity...

November Cleaning Required?

Month-5: segments cleaned but *not* required *but*.... *It's tough* to change old habits!

Results and Return

Frequency	Scheduled Cleaning (6-months)	Actual Cleaning	Change (Reduction %)	Cost/S	Segment	Total	Reduction	Comprehensive Cost Assessment
Monthly	6	1	83%	\$	400	\$	2,000	Cost of truck
Monthly	6	1	83%	\$	400	\$	2,000	Vehicle
Monthly	6	2	67%	\$	400	\$	1,600	maintenance parts
Monthly	6	1	83%	\$	400	\$	2,000	and labor
Monthly	6	2	67%	\$	400	\$	1,600	• Fuel
Monthly	6	1	83%	\$	400	\$	2,000	 loois and materials
Monthly	6	1	83%	\$	400	\$	2,000	Personnel labor
Monthly	6	1	83%	\$	400	\$	2,000	and benefits
Monthly	6	1	83%	\$	400	\$	2,000	
Monthly	6	1	83%	\$	400	\$	2,000	Productivity
6-Months	60	12	80%		Ĵ	\$	19,200	Savings

Net Return

			Annual Productivity	
Year	Units	Total Cost	Savings	Yearly Net Return
1	10	\$36,950	\$38,400	\$1,450
2	10	\$3,990	\$38,400	\$34,410
3	10	\$5,990	\$38,400	\$32,410
3-Year Total		\$46,930	\$115,200	\$68,270

Year 1	Year 2	Year 3
Purchase Hardware, Software, Comms	Software, Comms	Software, Comms, Battery*

Net Three-Year Return

Battery*: Conservative Calculation: 2-years for replacement

Situation

- System 232 miles sewer
- **Process** High Frequency Cleaning: <u>weekly</u> & monthly segments
- **Challenges** They are unable to clean entire system
- Study ScopeDuration: 4-months20 hot spots: 8 cleaned weekly, 12 monthly

Typical Weekly Segment Pattern

Site

Pipe Diameter:8"4-Month Peak Height:1.58"Action:do not clean

Cleaning Frequency Change

Schedule-driven:	19
Actual:	0
Cleaning Reduction:	100%

Site

Pipe Diameter:10"Peak Height:5.23"

Cleaning Frequency

Schedule-driven: Segment-Driven:

Reduction:

Renton - Results and Return

Site Name	Pipe Size	Frequency	Scheduled 4-Months	Actual	% Change	Cost/Segment	4 Month Savings	
1	8	Weekly	19	0	100%	\$ 400	\$ 7,600	
2	8	Weekly	19	1	95%	\$ 400	\$ 7,200	
3	8	Weekly	19	0	100%	\$ 400	\$ 7,600	
4	10	Weekly	19	0	100%	\$ 400	\$ 7,600	Comprenensive
5	8	Weekly	19	3	84%	\$ 400	\$ 6,400	Cost Assessment
6	8	Weekly	19	2	89%	\$ 400	\$ 6,800	Cost of truck
7	8	Weekly	19	0	100%	\$ 400	\$ 7,600	
8	10	Weekly	19	0	100%	\$ 400	\$ 7,600	• Insurance
			152	6	96%		\$ 58,400	Vehicle
9	8	Monthly	4	0	100%	\$ 400	\$ 1,600	maintenance
10	8	Monthly	4	0	100%	\$ 400	\$ 1,600	parts and labor
11	8	Monthly	4	0	100%	\$ 400	\$ 1,600	• Fuel
12	8	Monthly	4	0	100%	\$ 400	\$ 1,600	
13	8	Monthly	4	0	100%	\$ 400	\$ 1,600	• TOOIS and
14	10	Monthly	4	0	100%	\$ 400	\$ 1,600	materials
15	8	Monthly	4	2	89%	\$ 400	\$ 800	Personnel labor
16	8	Monthly	4	0	100%	\$ 400	\$ 1,600	and benefits
17	8	Monthly	4	0	100%	\$ 400	\$ 1,600	
18	8	Monthly	4	1	95%	\$ 400	\$ 1,200	
19	8	3 Months	1	0	100%	\$ 400	\$ 400	Dural states in
20	8	3 Months	1	0	100%	\$ 400	\$ 400	Productivity
			42	3	93%		\$ 15,600	Savings
Total			194	9	95.4%		\$ 74,000	

Net Return: Renton

			Yearly Productivity	Yearly Net	
Year	Units	Total Cost	Savings	Return	
1	20	\$75,900	\$222,000	\$146,100	
2	20	\$7,980	\$222,000	\$214,020	
3	20	\$11,980	\$222,000	\$210,020	
3-Year Total	\$60	\$95,860	\$666,000	\$570,140	

Year 1

Year 2

Purchase Hardware, Software, Comms Software, Comms

Year 3

Software, Comms, Battery*

Net Three-Year Return

Battery*: Conservative Calculation: 2-years for replacement

Case 3 – Large West Coast Utility

Prior Frequency	Scheduled (One Year)	Actual	Reduction	% Reduction	Cost/Segment	Productivity Savings
Monthly	12	1	11	92%	\$ 595	\$ 6,545
Monthly	12	1	11	92%	\$ 595	\$ 6,545
Monthly	12	1	11	92%	\$ 595	\$ 6,545
Monthly	12	2	10	83%	\$ 595	\$ 5,950
Monthly	12	2	10	83%	\$ 595	\$ 5,950
Monthly	12	0	12	100%	\$ 595	\$ 7,140
Monthly	12	1	11	92%	\$ 595	\$ 6,545
Monthly	12	2	10	83%	\$ 595	\$ 5,950
Monthly	12	1	11	92%	\$ 595	\$ 6,545
Monthly	12	2	10	83%	\$ 595	\$ 5,950
Monthly	12	2	10	83%	\$ 595	\$ 5,950
Monthly	12	1	11	92%	\$ 595	\$ 6,545
Monthly	12	1	11	92%	\$ 595	\$ 6,545
Monthly	12	1	11	92%	\$ 595	\$ 6,545
Monthly	12	1	11	92%	\$ 595	\$ 6,545
Monthly	12	2	10	83%	\$ 595	\$ 5,950
Monthly	12	2	10	83%	\$ 595	\$ 5,950
Monthly	12	2	10	83%	\$ 595	\$ 5,950
Monthly	12	2	10	83%	\$ 595	\$ 5,950
Monthly	12	2	10	83%	\$ 595	\$ 5,950
Monthly	12	2	10	83%	\$ 595	\$ 5,950
Monthly	12	2	10	83%	\$ 595	\$ 5,950
Monthly	12	2	10	83%	\$ 595	\$ 5,950
Monthly	12	2	10	83%	\$ 595	\$ 5,950
Monthly	12	1	11	92%	\$ 595	\$ 6,545
	300	38	262	87%		\$ 155,890

Scope

- 12-months
- 25 monitored hot spots
- *Monthly* frequencies
- Large city, higher costs

Extras

Three SSOs prevented

Take-away

Productivity savings & SSO prevention enhance results

Year	Sites	Total Cost	Yearly Productivity Savings	Yearly Net Return	
1	25	\$ 87,500	\$ 155,890	\$ 68,390	
2	25	\$ 75,000	\$ 155,890	\$ 80,890	
3	25	\$ 75,000	\$ 155,890	\$ 80,890	
3-Year Totals		\$ 237,500	\$ 467,670	\$ 230,170	

Year 1Year 2Turn-Key ServicesTurn-Key Services

Year 3 Turn-key Services Net Three-Year Return

Case 4: JEA, Jacksonville, FL

Situation

System >3,900 miles of gravity sewer

ProcessRegular scheduled cleaning
Quarterly, Semi Annual, Annual

Monitors 112 locations

JEA One Year Results

Frequency	# Locations	Cleaning Totals
Quarterly	70	280
Semi Annual	170	340
Annual	110	110
Scheduled Total	350	730
Actual Locations Cleaned	350	454
Reduction		276
Reduction %		37.8%
Labor Hours Saved		828
Labor Hours Cost Savings		\$ 110,000
SSO Prevented	10	

JEA Take-Aways

- Smart technology enables...
 - Continuous remote site visibility
 - Drives cleaning process
- Data shared with engineering
 - Becomes resource for analytics & trends
- Added SSO prevention eliminates
 - Fines
 - Reporting and administration tasks
 - Bad publicity
- Measurable savings and return on investment

Conclusions

Optimized Cleaning with smart tech Reduces...

- Stress on Operations
- Long-term pipe wear
- Time in the street for crews

Provides...

- Immediate performance improvement
- Fast measurable pay-back
- Opportunity to re-allocate resources
- Ongoing SSO protection
- Remote site visibility to the collection system
- Data for other purposes
- Predictability and right-frequency planning

Final Thoughts...

Ten Years Ago...

- A <u>hypothesis</u> was presented at the Florida Water Resources Conference
 - Could smart tech be used to drive cleaning
 - Result? No interest, just blank stairs

And since then...

Data & Results Have Transformed Hypothesis to Practice

- Hundreds of utilities employ smart tech-driven optimized cleaning overcoming:
 - Labor challenges,
 - Budget limitations,
 - Resource challenges of time

Thank You!

New England Contacts

Matt Brown Business Development Manager <u>mbrown3@idexcorp.com</u> 256-656-6385

Pete Frick Regional Sales Manager <u>pfrick@idexcorp.com</u> 203-725-4062

Presenter

Jay Boyd Director of Market Development jboyd@idexcorp.com 442-245-0008

2nd Generation Technologies & Notifications

Machine Learning Predicts Blockages

Key to Optimization: knowing and predicting site-conditions

- Prediction provides advanced notice days or weeks
- <u>Prioritization</u> directs resources

