

January 2024

Agenda

Why a Watershed Management Plan?

What's in the Plan?

How does the Plan build Resilience?

What Next?

Why a Watershed Management Plan?

New London, CT

Thames River and Long Island Sound

One of only three deep harbors in CT

State's smallest municipality: 5.7 square miles of land and 5.2 square miles of water

~ 130 acres considered freshwater wetlands

MS4 community

Evolving Project Goals

From a watershed to a sub-watershed based plan with realistic goals that still help Long Island Sound

UPDATE MAPS & NATURAL RESOURCES INVENTORY

PROVIDE PUBLIC EDUCATION

ASSIST WITH SUSTAINABLE CT CERTIFICATION

EXPAND & BUILD UPON EXISTING PROJECTS

ADDRESS IMPAIRED WATERS, MS4 PERMIT, AND SET PRIORITIES FOR MS4 OUTFALL CATCHMENT AREA INVESTIGATIONS

PROVIDE
RECOMMENDED
UPDATES TO THE PLAN
OF CONSERVATION
AND DEVELOPMENT

CONSIDER EQUITY

ADDRESS THE 9
ELEMENTS OF
WATERSHED BASED
PLAN TO QUALIFY FOR
ADDITIONAL FUNDING

collaboration

EPA's 9 Elements of a Watershed Based Plan

- Identification of Pollutant Causes & Sources
- 2. Pollutant Load Reduction Estimates
- 3. Best Management Practices
- 4. Financial and Technical Assistance
- Education and Outreach
- 6. Plan Implementation Schedule
- 7. Interim Milestones
- 8. Monitoring and Assessment
- 9. Plan Implementation Effectiveness

Improve Water Quality

© Arcadis 2021 5 February 2024

Watershed Management Planning Process

Framework & Visioning

Monitor & Reassess

Existing Conditions

Implementation

Watershed
Characterization
& Data Collection

Phase 1 of the project created the Watershed Management Plan Framework

Phase 2 developed the full Plan:

- Estimation of nitrogen loads
- Evaluation of potential structural BMP improvements and pollutant load reductions
- Developing performance indicators and measures of success
- Implementation Planning

Selection of Management Measures

Pollutant Source Loads & Reductions

Stakeholder-Identified **Potential Pollutant Sources**

- Homeless Encampment
- Pig Farm
- Railroad
- Illegal Dumping
- Salt Storage and Excess Plowed Snow
- Brownfields
- Transfer Station
- Manicured lawns
- Large impervious areas car dealerships, strip malls, etc.
- Failing infrastructure collapsed culvert under the railroad
- Runoff from construction sites

5 February 2024 © Arcadis 2021

Total Nitrogen Loading Analysis

Modeling procedure:

- Analyzed land use within each catchment area
 - Commercial? Residential? Open space?
- Each land use is associated with an estimated nitrogen load
- Hot spots and critical areas identified at previous
 Public Open House were used to enhance land use model
- Utilized previously sampling results and targeted new sampling results to calibrate model
- Final output: Total Nitrogen Loading and Concentrations for drainage areas

Site Selection Process

Technical Considerations:

- Average Annual Total Nitrogen Load
- Amount of Impervious Area
- Soil Infiltration Capacity
- Depth to Water-table
- Programmatic Considerations:
 - Planned Capital improvements
 - Flooding Frequency
 - Ease of Maintenance
- Social and Environmental Considerations:
 - Sensitive Receptors
 - Vulnerable populations (SVI)

Scoring Criteria	1	2	3	4	5	Category Weight	Multiplier
	No planned	Planned	Planned	Planned	Planned		
Planned Capital	improvements	improvements	improvements	improvements	improvements		
Improvements	within 5 years	within 5 years	within 4 years	within 3 years	within 2 years	moderate	2
			Moderate				
	Lowest flooding	Low flooding	flooding	High flooding	Highest flooding		
	frequency and	frequency and	frequency and	frequency and	frequency and		
Flooding Frequency	impact	impact	impact	impact	impact	moderate	2
	Is not accessible to		Accessible to		Accessible to		
	maintenance		maintenance		maintenance		
	personnel or		personnel, but		personnel and		
Ease of maintenance	equipment		not equipment		equipment	moderate	2
Average Annual TN		500-1000	1000-1500	1500-2000	loading > 2000		
Load [lbs/year]	0-500 lbs/year	lbs/year	lbs/year	lbs/year	lbs/year	highest	4
		Parcel is 30%-	Parcel is 50%-	Parcel is 70%-			
Amount of Impervious	Parcel is < 30%	49% impervious	69% impervious	89% impervious	Parcel is > 90%		
Area	impervious surface	surface	surface	surface	impervious surface	highest	4
	Site is mostly Soil	Site is mostly Soil	Site is mostly Soil	Site is mix of Soil	Site is Mostly Soil		
Soil Infiltration Capacity	Group D	Group C	Group B	Group A & B	Group A	high	3
	i i	2ft - 3 ft to	3ft - 4ft to	4ft - 5ft to			
	< 2ft to seasonal	seasonal high	seasonal high	seasonal high	> 5ft to seasonal		
	high groundwater	groundwater	groundwater	groundwater	high groundwater		
Depth to Water-table	table	table	table	table	table	moderate	2
	0-20% Overall	20-40% Overall	40-60% Overall	60-80% Overall			
Presence of Vulnerable	Social	Social	Social	Social	80-100% Overall		
Population(s)	Vulnerability	Vulnerability	Vulnerability	Vulnerability	Social Vulnerability	low	1
	more than 3	3 sensitive	2 sensitive	1 sensitive	no sensitive		
	sensitive receptors	receptors in site	receptors in site	receptor in site	receptors in site		
Sensitive Receptors	in site vicinity	vicinity	vicinity	vicinity	vicinity	low	1

BMPs are designed to reduce:

TSS
TOTAL SUSPENDED

SOLIDS

15

P

PHOSPHORUS

7 N NITROGEN

Best Management Practices (BMPs) role in stormwater management

- Slows flow velocity to promote ground infiltration
- Provides treatment that reduces pollutant loads
- Reduces peak flows and control erosion
- Enhances resilience

BMP Retrofit: Lincoln Avenue Rotary

Parcel and Retrofit Overview

- Ownership: City of New London
- Soil Drainage Class: Well drained soils
- Parcel Impervious Area: 0%
- Impervious Area Disconnection: Up to approximately
 3.5 acres
- Total Nitrogen Load to Proposed BMP: 113 lbs/year
- Estimated Total Nitrogen Removal: 68 lbs/year, approximately 60%
- Parcel has convenient existing drainage for stormwater overflow piping
- Location and open space allows for easy access and maintenance

Stormwater Outfall Retrofit

Channel Restoration

Potential Benefits of Outfall Treatment and Channel Restoration

- Combines water quality and quantity controls
- Improved aesthetics through landscaping
- Lower costs compared to other stormwater control measures (SCMs)
- Less maintenance compared to other SCMs
- Pollutant load reductions TMDLs

How does the Plan build Resilience?

Alewife Cove - Problem

- Deposition of sand/sediment into the lower Cove
- Shoaling
- Alteration of channel depth and flow
- Continued erosion of the Ocean Beach jetty
- Negative impacts on spawning of fish species and ecosystem of local birds

Due to sediment transport, wave and wind patterns and significant storms like Irene (2011) and Sandy (2012)

Alewife Cove - Solution

- Alternatives Feasibility Analysis for Stabilization of Alewife Cove: Lower Channel and Cove Outlet
- LIS FF Grant Collaboration with Waterford and Alewife Cove Conservancy

Grant \$400,000

Match \$125,000

Total \$525,000

- Shovel Ready nature-based community resilience project.
- Community Resilience, Conservation Efforts, Water Quality improvements
- Stabilize outlet, develop sustainable long-term solution to restore and promote resilience.

Hempstead Street Flooding

- Localized ponding of surface runoff
- 43 Hempstead Street (a Brownfield Site)

Opportunity to align a planned project with a beneficial watershed improvement.

Hempstead Street Park Project

- City purchased the vacant parcel to create a public park.
- Brownfield Cleanup and Assessment Grant program funding to cleanup the site.
- Planned improvements align with Watershed Management Plan concept

- 20-acre sewershed for storm sewer system
- Catchment point at Hempstead and Home
- 35-40% impervious streets, parking lots, rooftops
- Approx. gallons of runoff from a one-inch storm = 29000

Water, Sewer, and Stormwater Ordinance Updates

Bylaw/Ordinance

Legal Authority

Rules & Regulations

Technical Requirements
Procedures

Guidance Materials

Examples & Details BMPs

Enhanced Bacteria & Nitrogen Sampling Supports MS4 Program Goals

- Illicit Discharges identified through sampling
- Water Quality focus areas were identified based on sampling and nitrogen load modeling results.
- Top retrofit opportunity areas were identified for when funding is available.
- An approved Watershed Based Plan unlocks potential funding sources.

Lessons Learned

25

Lessons Learned and Next Steps

Implementation takes time, funding, and people resources!

- Grant / Funding Program Requirements matching funds, QAPP these take time and effort
- People resources are limited. Working to expand partnerships and identify partnering opportunities.
- The Plan is a living document. Over time, it can be adapted and expanded.

Kathryn B. Edwards, PEPrincipal Engineer

Kate.Edwards@arcadis.com

Joseph Lanzafame, PE Director of Public Utilities

Arcadis. Improving quality of life.