

Biosolids Conversion

PERFORMANCE • RESULTS • CERTAINTY

Heartland Water Technology

Heartland Concentrator™

Decades of proven performance
Award-winning, globally recognized solution
COVAP: Cogen using waste-heat from engines
ROVAP: Evaporating RO concentrate

Established 2008

Hudson, MA

Technology Center

Murfreesboro, TN

Services

Wastewater Treatment

(Assured PFAS Separation™)

Waste Conversion

(Assured PFAS Destruction™)

HelioStorm™ Gasifier

Ultra-high temperature ionic gasifier

20 years in development at Idaho National Labs

Launching for Residuals in 2023

Provides Assured PFAS Destruction™

Ultra-High Temperature Ionic Gasification

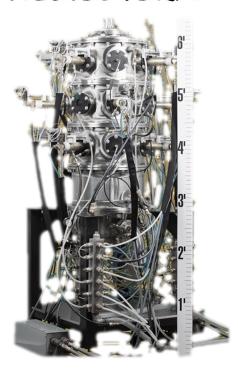
DESTRUCTION RANGE

Electrically-driven

Multiple Plasma Arcs

3,000 – 10,000°C

VERSATILE


HelioStorm[™] can accept a range of feedstocks and generate multiple materials eligible for beneficial reuse

TAR-FREE SYNGAS

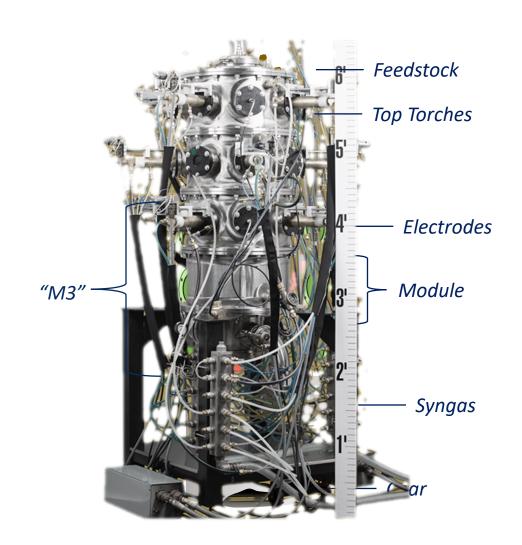
Tar-free syngas is used to generate electricity for the needs of HelioStormTM without the need for a thermal oxidizer

HELIOSTORM"

SCALABLE

Small project footprint (80' x 80')

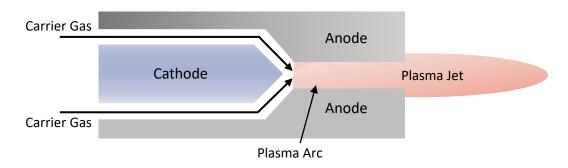
Multiple units combine to accommodate any facility output

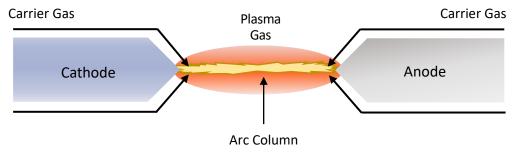

CHAR

HelioStorm[™] generates PFAS-free char that is eligible for beneficial reuse or wide range of other outlets and applications

A **scalable**, **multi-purpose**, **ultra-high-temperature** electric driven gasifier/pyrolizer with key features and operations:

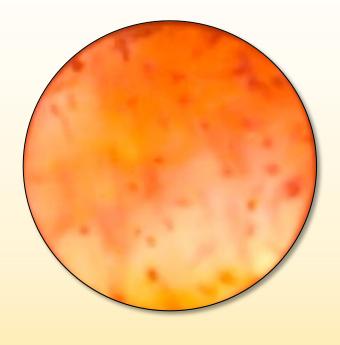
- Ionic field created by paired electrodes that produce an electric arc, filling the entire internal volume of the gasifier
- Multiple electrode pairs per module create an ultra-high temperature electric field
- Multiple modules can be stacked for optimized production
- Feedstock falls through, fully immersed into an ultra-hightemperature reaction zone, disassociating into individual atoms and ions
- Design of stacked modules creates a cascade of energy that reduces total input power




Hybrid Plasma Design

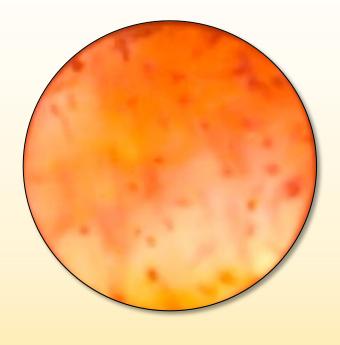
- Traditional Conventional Torch used for *preconditioning* of feedstock
- Free-burning generated between electrodes is unconfined, filling the entire diameter of the reaction cylinder – this live arc has a measurable voltage and carries current
- Ultra-high temperature is created by the arc, bringing feedstock into direct contact with the plasma

CONDITIONING PLASMA TORCH


DESTRUCTIVE PLASMA ARC (3,000 – 10,000°C)

IGNITION

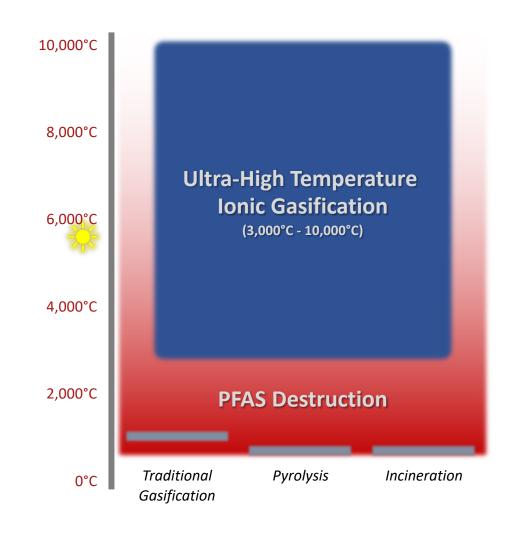
CONVERSION



Municipal Biosolids → Syngas + Char

IGNITION

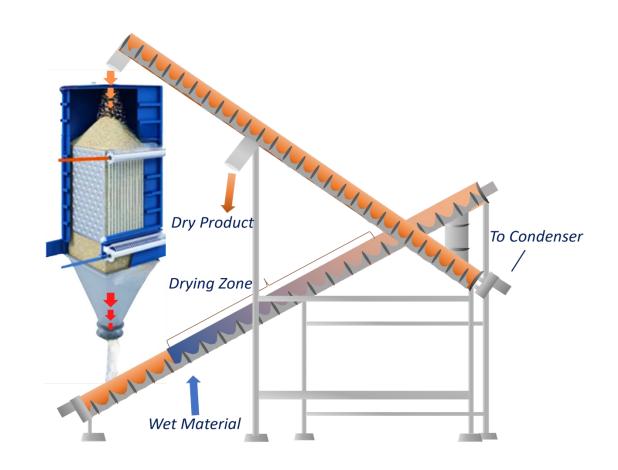
CONVERSION


Municipal Biosolids → Syngas + Char

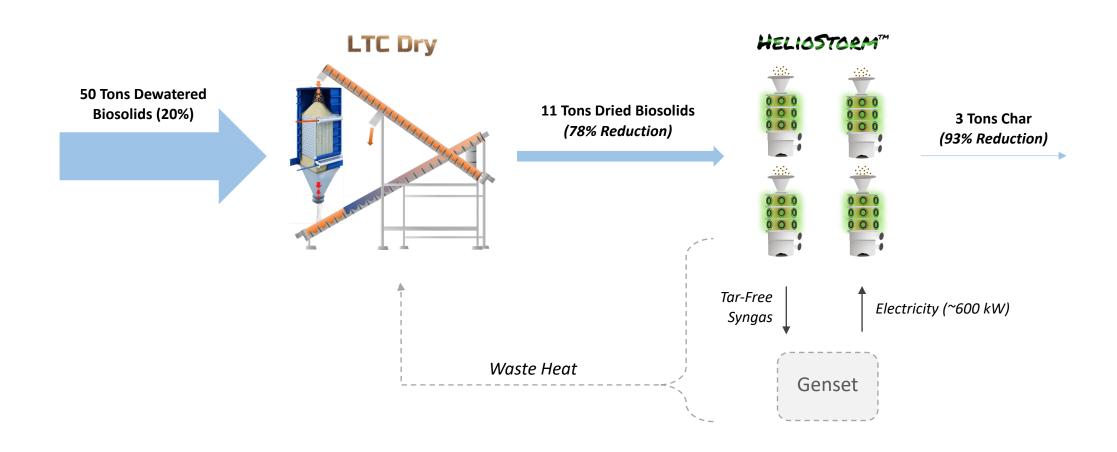
PFAS Destruction

ULTRA-HIGH TEMPERATURE IONIC GASIFICATION

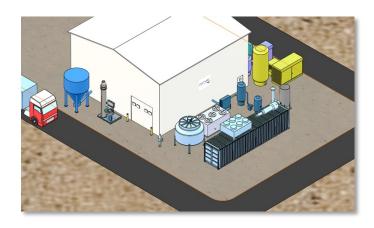
- Entire interior of the processor is an ultra-high temperature reaction zone
- Processing zone contains hyper-energetic gaseous ions, accelerating conversion process
- Vaporizes all feedstock, including carbon
- Transforms water into high-energy oxygen and hydrogen radicals and ions, rather than lowerenergy steam
- Waste completely breaks down to individual atoms and ions generating a consistent tarfree syngas with no by-products or toxin production

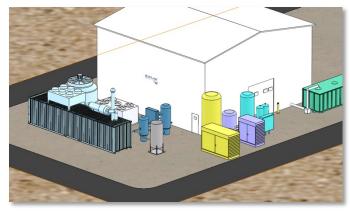


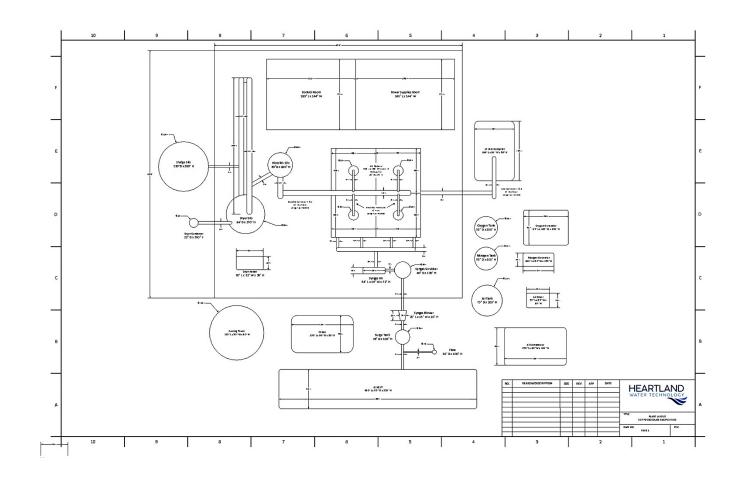
LTC Dry


LOW TEMPERATURE CONDUCTIVE HEATING

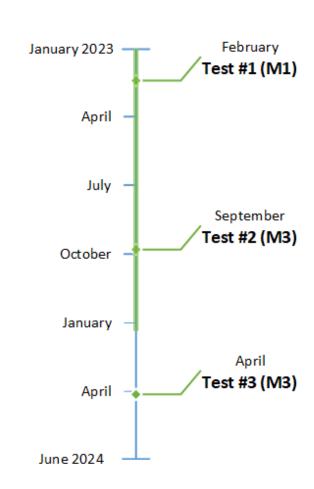
- Low Operating Temperatures: Low heat requirement due to dry matter conductive heating operated at low pressure
- Enhanced Thermal Efficiency: Designed to utilize low temperature waste heat sources from electrical cogeneration systems
- Low Emissions: Less odors & volatiles due to lower operating temperature
- Simple Design: Less risk, maintenance, and operational costs with minimal rotating equipment
- Improved Safety: Reduced operator exposure due to low operating temperatures






Typical 93% Feedstock Reduction

Plant Footprint (50 wt/d, 80' x 80')


Plant Footprint

Assured PFAS Destruction

- Undertaking a prescriptive, multi-stage analytical protocol to demonstrate PFAS destruction
- First test round completed Q1 on single module "M1" results exceeded expectations
- Subsequent tests completed Q3 on "M3" commercial-scale platform – developing White Paper
- Extended performance testing
- Hosting clients now

PFAS Validation

Test 1

- DRE (destruction and removal efficiency) of PFAS using M1
- Biosolid feedstock spiked with AFFF
- Mass balances performed on biosolids, syngas, char, and AFFF
- DRE results of the pilot testing indicate a greater than 99% destruction rate in PFOS, 6:2 FTS, and 8:2 FTS, and a 95% destruction rate for PFOA.
- Exceeded expectations

Test 2

- Char testing using commercial-scale
 M3 HelioStorm
- Results indicate non detect for PFAS compounds tested
- Method 537

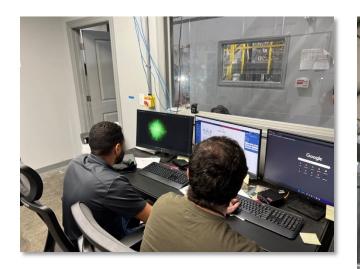
Test 3

- Testing of commercial-scale
 HelioStorm in TN Tech Center
- FTIR Testing: fluorine compound in syngas
 - Did not detect any fluorine compounds including HF, CF₄ C₂F₆ or SF₆
 - Likely being captured by the char but will be confirmed by solids testing

High Purity Syngas

Hydrogen Purity

 HelioStorm is equipped with online gas analyzers to continuously monitor the syngas for H₂, CO, H₂S, CH₄, N₂, and CO₂


FTIR Emission Testing

- Samples were collected in November 2023 after running on dried municipal biosolids and sent to a 3rd party laboratory for FTIR gas phase testing.
- The results show that HelioStorm syngas is also free of HF, HF, HCL, CF₄, C₂F₆, and SF₆ compounds reducing downstream air pollution control equipment.

Compound	Detected Concentration
HF	No Trace
HCL	No Trace
CF ₄	No Trace
C_2F_6	No Trace
SF ₆	No Trace

Heartland Technology Center

Murfreesboro, TN

Commercial-scale Gasifier:

Facilitates client feedstock evaluation

Delivers complete analytical data capture to assess performance against Utility KPIs

Validates performance at a commercial scale

Project Delivery

BUILD

Full Project Development
Tailored to Customer KPIs
Heartland Team
Permitting
Construction
Commissioning

OWN

NO Client CapitalLong-term Cost GuaranteeCradle-to-Grave responsibility

OPERATE

NO Client Staffing
NO Client Training
Assured PFAS Destruction
Heartland Personnel
Optimal O&M

Booth 113

Jim Henderson

Business Development Director jhenderson@heartlandtech.com www.heartlandtech.com 757.483.8933

Brandon Davis

Director of Engineering -Gasification bdavis@heartlandtech.com www.heartlandtech.com

