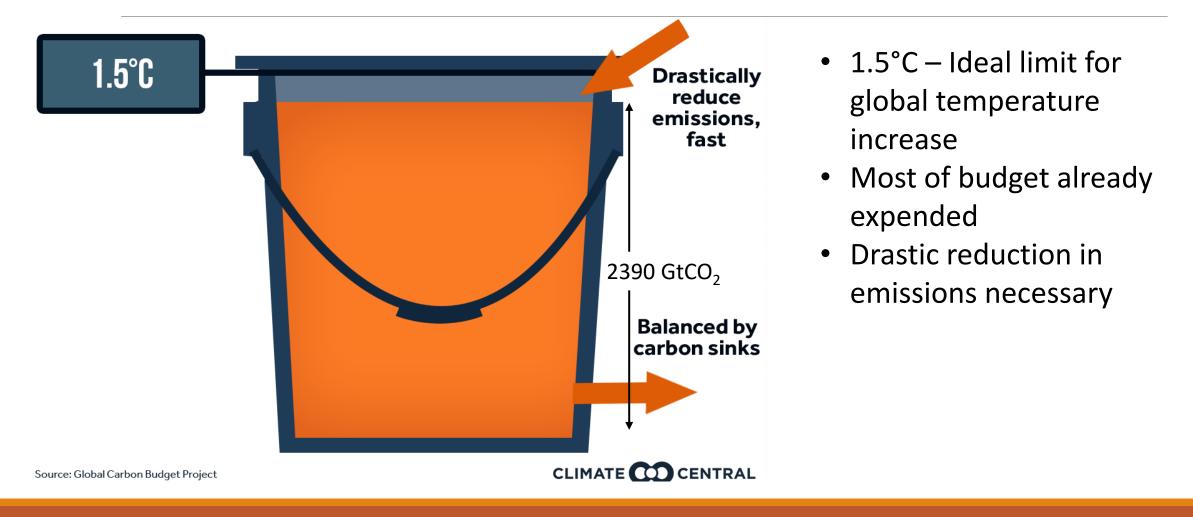
Energy Management Basics for WWTFs

PAUL CAMPBELL, JKMUIR

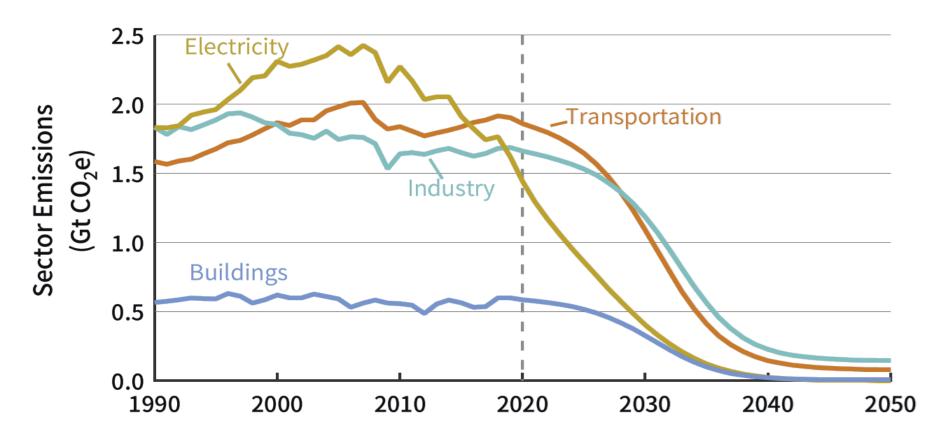
MEGAN COLEMAN, JKMUIR

Drivers for energy and carbon reduction

Agenda

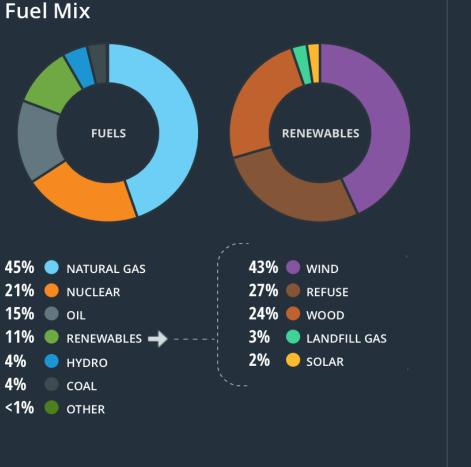


Strategic planning for energy management


Tools for energy management implementation

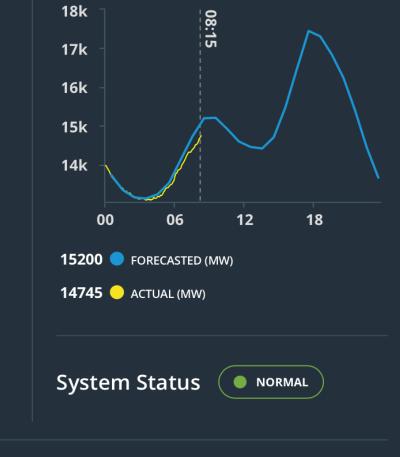
Need for Reduction in Carbon Emissions

Image Source: <u>Climate Central</u>


Urgency Around Decarbonization

- Significant reduction in usage across all industries
- Electrical sector has the most progress to make
- Timeframe is short

Source: RMI's Scaling US Climate Ambitions to Meet the Science and Arithmetic of 1.5°C Warming



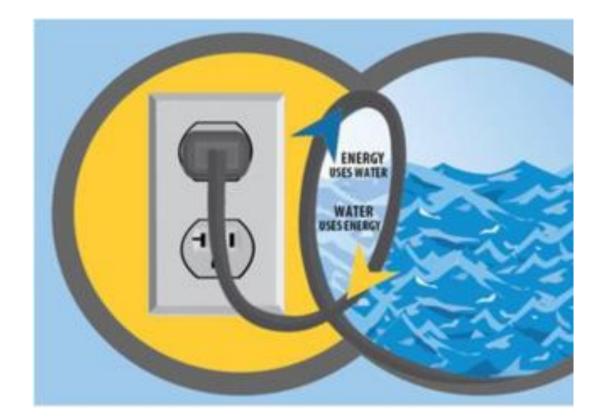
AVAILABLE

CAPACITY (MW)

System Demand

Today's Snapshot AS OF 01/23/2022 07:50 AM

23,014 17,450


FORECASTED PEAK DEMAND (MW) **3,022** SURPLUS CAPACITY (MW)

17,590 YESTERDAY'S PEAK DEMAND (MW)

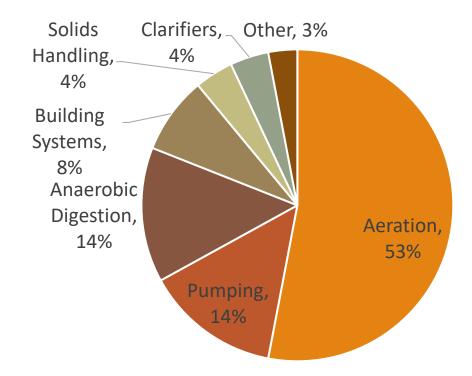
Our Responsibility: Energy Management is Carbon Management

- **3%** Water sector's share of global GHG emissions¹
- 4% Water sector's share of US energy use²
- **5** X Ratio of energy potential in wastewater to energy required for treatment³

Sources: ¹IEA ² EPRI ³WERF

High Level Principles of Energy + Carbon Management

Understand Availabilty of Existing Data	Evaluate Energy Usage	Optimize Operations and Controls	Capital Planning	Long Term Goals and Strategies
Historic electric billing and SCADA Data	Identify and prioritize processes that use substantial amounts of energy	Identify low-cost operational adjustments that reduce energy usage and intensity	 Categorize energy saving measures by projected savings Integrate energy efficiency into equipment upgrades 	Effective management is ongoing management


Using Data to Inform Energy Management Decisions

- Energy management is only as good as the data we have
- Submetering Real time power data
 - Trend process performance data against real time energy usage data to pinpoint energy intensive equipment
- Assess current energy usage against previous energy usage
- Spot readings from field testing

Reducing Energy Needs in Water Utilities

- Typical WRRFs can reduce energy use by 15-30%¹
- Focus on energy intensive processes/equipment
- Turn it off (or turn it down)
- Implement automated process controls
- Properly sized equipment
- Monitor equipment performance to maintain efficiency
- ➢Onsite generation
- Demand response/battery storage

What is an Energy Evaluation?

Steps	Actionable Items
Understand typical operations	 Understand billing and rates Evaluate equipment and process efficiency
Identify ways to save energy	Identify energy conservation measures/operational changes
Plan for implementation	 Explore energy efficiency funding Integrate energy management into capital improvement plans
Integrate into culture	 Involve staff Prioritize energy efficient design

Implement Energy Conservation Programs

Formalize a Plan

- Implement low-cost operational adjustments
- Develop a schedule for improvement upgrades

Create Accountability

Designate an energy manager/energy team

Evaluate Energy Usage Before + After Project Implementation

- Energy monitoring system or field verification
- Follow up with utility/site manager

Integrate Plant Staff

Report findings to staff to ensure inclusion and participation in energy management programs

Understanding How You're Billed

On Peak and Off Peak Hours

Peak charge is 2X more expensive

Demand Charge

Demand charge is 22% of the total cost

DETAIL OF CURRENT CHARGES

Delivery Services

	Energy-kWh	Demand-kW	Demand-kVA
Metered Usage	406990 kWh	i	
Peak	141865 kWh	824.0 kW	860.0 kVA
Off Peak	265125 kWh	852.0 kW	-
Billed Usage	406990 kWh	824.0 kW	860.0 kVA
Customer Charge			223,00
Dist Chg On Peak	0.01617199 x	141865 kWh	2,294.23
Dist Chg Off Peak	0.00864199 x	265125 kWh	2,291.22
Transition Charge	0.00034205 x	406990 kWh	139.21
Transmission Charge	0.02111136 x	406990 kWh	8,592.11
Distribution Demand Chg	5.76 x	824 kW/kVA	4,746.24
High Voltage Discount	-0.52 x	824 kW	-428.48
Energy Efficiency Chg	0.00957 x	406990 kWh	3,894.90
Renewable Energy Chg	0.0005 x	406990 kWh	203.50
High Voltage Metering	-1.0 % x	\$ 22384.41	-223.84
	Total Deliv	ery Services	\$ 21,732.09

Energy Conservation Measure Opportunities

OpengyLional Norsenvest (OnM) Mesespices AdJMs/EndMits- Capital Improvement		ENERGY CONSERVATION MEASURES	Annual Energy Savings	Annual GHG Emissions Reduction	First Year Annual Dollars	Initial Budgetary Project	Simple Payback (years)
	-		(kWh)	(MTCO ₂ e)	Saved	Cost (\$)	
	OM 1	Reduce Cell #1 Anaerobic Mixer Operation	27,173	9.6	\$4,348	-	Immediate
	OM 2	Optimize Cell #3 Aerobic Mixer Operation	97,216	34.4	\$15,555	-	Immediate
	M 3	Optimize Primary Sludge Pump Operation	223,161	79.0	\$35,706	-	Immediate
	ECM 1	Replace Cell #3 Aerobic Mixers and Optimize Operation	165,364	58.5	\$26,458	\$308,220	11.6
•	ECM 2	RAS Pump Replacement	101,101	35.7	\$16,176	\$267,800	16.6
	ECM 3	Plant Water Replacement	281,999	99.8	\$45,120	\$658,125	14.6
	ECM 4	WAS Pump Replacement	48,734	17.2	\$7,797	\$200,200	17.2
	FCM 5	Aeration Diffuser Replacement	<u>342,312</u>	121.2	\$54 770	\$45 <mark>0,000</mark>	8.2
	Potentia	l Energy Program Cost and Savings	1,189,844	421.0	\$190,375	\$1,884,345	9.9
	Notes: 1. OM 2 1	not included in total savings to avoid double counting the savings	associated wi	th ECM 1			

ECM Case Study: Blower Operation

Blower	Blower Efficiency
1	58%
2	71%
3	66%

Savings: 500,000 kWh/year = \$90,000

Energy Efficiency Incentive Programs

Funding available for high efficiency equipment and controls for process, HVAC, and lighting equipment

Pittsfield, MA Nutrient Removal Upgrade: \$200,000

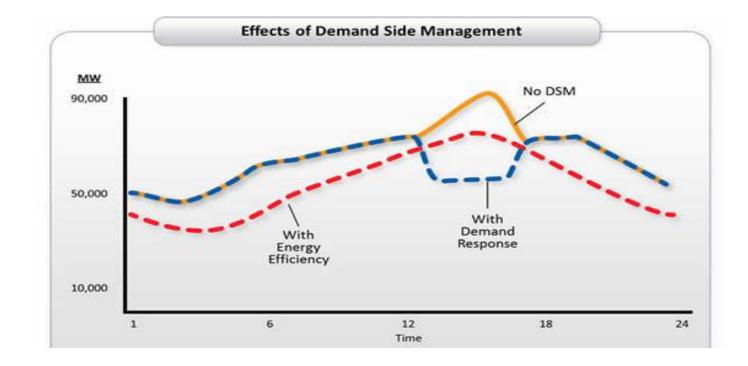
Mixing equipment, aeration blowers, aeration controls, boilers

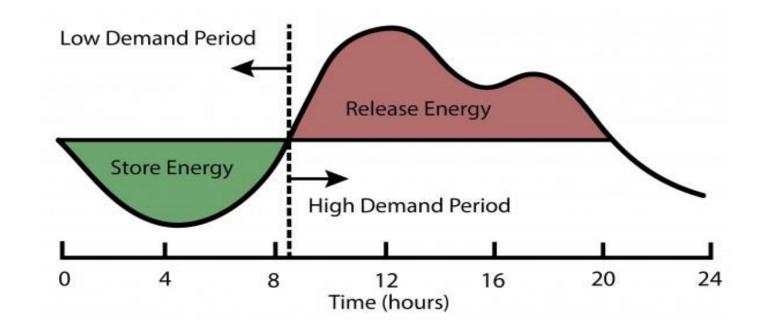
South Street Ridgefield, CT Upgrade: \$410,000

UV controls, process blowers, process pump and blower VFDs, lighting, HVAC

Enfield, CT Upgrades: \$500,000

Aeration blowers, process pump VFDs, mixing equipment, mixer VFDs

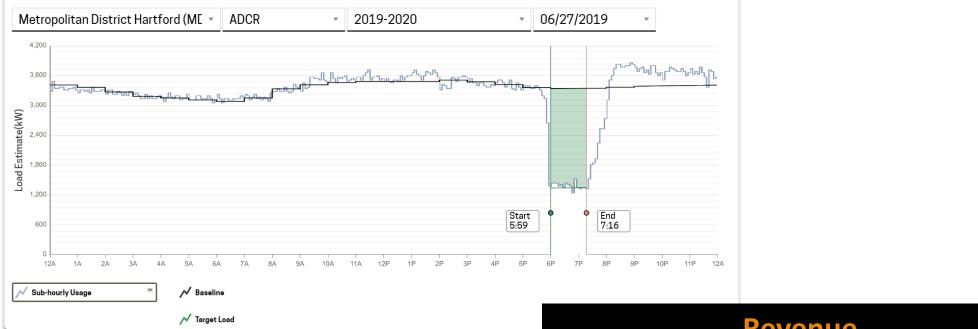

mass save


Rhode Island Energy™

a PPL company

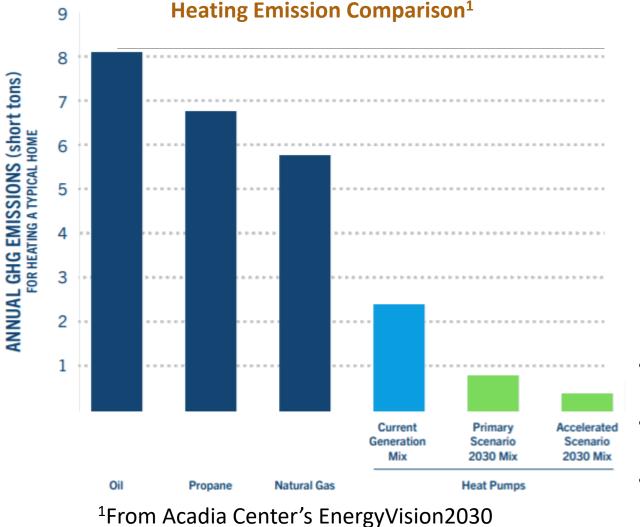
Revenue Through Demand Response and Battery Storage

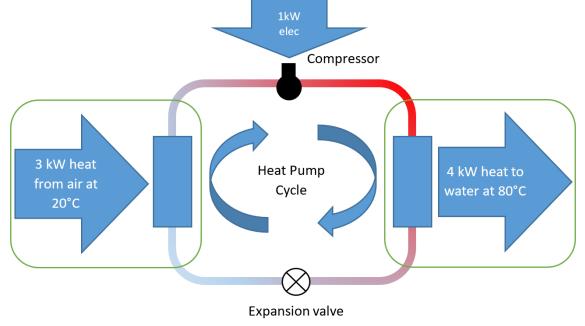
- Clip load during high-cost kWh times and charge from the grid during lowcost kWh times
- Participate in previous demand response programs + additional with more frequent events
- New England Utilities Daily Dispatch Program: \$200 -\$300/kW; up to 60 summer events
- NYSERDA offers upfront commercial storage incentives paired with renewables

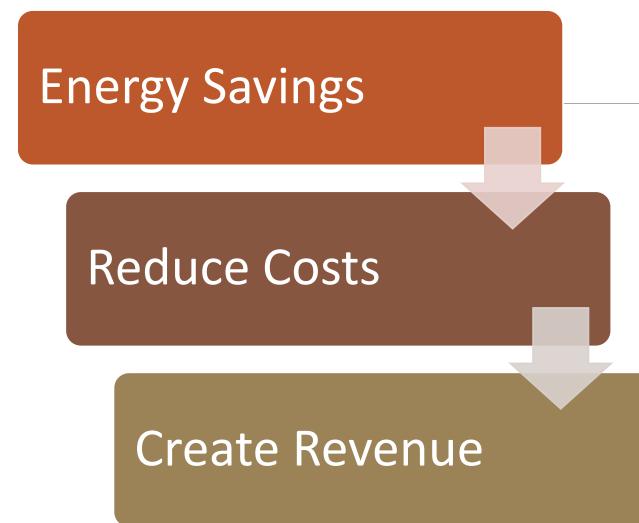

Daily Load Shedding Using Battery Storage

Program	Incentive Opportunity
ISO-NE	\$55/kW/year
EnergizeCT	\$200/kW/summer
Connected Solutions	\$200/kW/summer
RI Energy	\$400/kW/summer

Hartford MDC Demand Response




	Revenue	
Summer 2018	1,325 kW	\$57,227
Winter 18/19	1,580 kW	\$45,382
Summer 2019	1,941 kW	\$80,101
Total		\$182,711


Electrification at Water Utilities: lower carbon emissions + drastically increase efficiency (without increasing costs)

Heat Pumps achieve efficiencies of over 400%

- Water source heat pumps can be used to recover/dump heat from/into process stream for heating/cooling spaces
- Air source heat pumps use the heat within outdoor air and can operate down to temperatures of -17°F
- Ground source heat pumps use the heat from underground to heat spaces

Summary

Thank You

Paul Campbell pcampbell@jkmuir.com Megan Coleman mcoleman@jkmuir.com

(860) 249-0989 JKMuir.com