Down the Drain: An Investigation of PFAS in an Island Community's Wastewater Collection System

Sarah Jakositz, EIT
CDM Smith
Eric Spargimino, PE, PMP
CDM Smith

September 13, 2023

Outline

- Background
- Source Identification Approach
- Data Evaluation

Ongoing Evaluation

About Nantucket

- Located 30 miles off the south coast of Cape Cod
- Solely dependent on the infrastructure and resources existing within 48 square miles
- Population of around 14,000 swells to around 80,000 or more in the summer
- Drinking water is dependent on Sole Source Aquifer
 - No reasonable available alternative drinking water sources should the aquifer become contaminated
- Protection of the aquifer and public health is a top priority

Project Objectives

Develop a PFAS management plan focused on protecting groundwater resources

Create a public outreach plan to inform residents and ensure consistent communication

Long-Term Goal: Develop and implement a PFAS source control and reduction plan to reduce risks associated with PFAS releases into the environment

Project Objectives

Develop a PFAS management plan focused on protecting groundwater resources

Create a public outreach plan to inform residents and ensure consistent communication

Long-Term Goal: Develop and implement a PFAS source control and reduction plan to reduce risks associated with PFAS releases into the environment

- Sources
- Handlers and/or Transporters
- Receptors
- Pathways

Preliminary Conceptual PFAS Cycle for Nantucket, MA

Surfside Wastewater Treatment Facility

Goals

 Identification and management of PFAS at the Surfside WWTF

Actions

- Decision matrix and sampling plan
- Evaluation of PFAS destruction technologies

Accomplishments

- Sampling program underway
- Identification of contributions to WWTF
- Path forward for source identification and mitigation

Source Identification and Characterization

Source Identification – From EPA's PFAS Roadmap and Pretreatment (March 2023)

Recommendations for POTWs

Establish universe in the service area & downstream of the POTW

- Conduct IU inventory of PFAS industries, including non-SIUs
- Collaborate with drinking water to determine downstream intakes
- Consider sludge disposal goals

Develop sampling plan

- Use method 1633 in conjunction with 1621
- Include IUs identified in PFAS inventory
- Select collection system monitoring locations to differentiate industrial vs. domestic influent contributions where possible
- Frequency recommendation: quaterly

Implement solutions

- Incorporate monitoring requirements into IU control mechanisms
- Incorporate local limits into IU control mechanisms
- Local limits can be BMPs
- Ensure IUs are in ICIS and submitting data electronically
- Notify affected public water suppliers

Decision Matrix for Nantucket Wastewater Treatment PFAS Assessment | Town-wide PFAS Assessment | Town of Nantucket, MA

Purpose: Establish a long-term program to identify and assess PFAS sources to the wastewater treatment facility (WWTF) such that influent concentrations can be understood, and plans can be directed towards the goal of identifying, building a baseline of, and reducing PFAS concentrations.

WASTEWATER TREATMENT PFAS ASSESSMENT

STEP 1

Surfside WWTF Influent Identification

- Develop comprehensive sampling plan for WWTF influent sources
- Develop inventory for source flow sampling, identify source contributions
- Perform seasonal sampling of combined influent to establish baseline PFAS concentrations

Are results for combined influent above reference concentration?¹

(combined influent, to the extent practical, should be representative of all influent sources identified in Step 2)

NO

Set-up annual monitoring program of WWTF combined influent

Are results above reference concentration?¹ If "NO", continue annual monitoring

STEP 2

YES

Sample Major Influent Source Flows

YES

Sample influent source flows to identify major PFAS sources:

- Residential septage haulers
- Siasconset WWTF sludge
- Collection systems service areas (pump stations/force mains)
- Landfill leachate

Are results from any of the major sources above reference concentration?¹

NO

If PFAS levels are detected below reference concentration, develop PFAS monitoring program with quarterly sampling

Continue inventory program and record keeping

Suspect Industries Identified as Potential Commercial and Industrial PFAS Users

Source Characterization

Paper and Food Packaging

- Side-chain fluoropolymers
- PAPs/diPAPs
- NEtFOSE, NEtFOSAA, PFBS, PFOA, PFHxA

Textile and Leather

- Polymers
- Polymer raw materials
- PFOA, FTOHs

AFFF

- PFOA, PFOS, PFHxS
- C8 fluorotelomers (8:2 FTS)
- C6 fluorotelomers, PFOA

WWTPs and Landfills

- n:2 FTUCA
- n:3 FTCA (5:3 FTCA)
- n:2 FTSA
- EtFOSA

Metal Plating

- PFOS
- 6:2 FTS, 8:2 FTS
- F53B

Data Evaluation

Laboratory Analysis

Targeted Analysis

- Year 1 USEPA Method Modified 537.1
 - Was the best available test when we started
- Year 2 Draft USEPA Method 1633 for 40 PFAS Compounds
 - Using the lab where the draft method has been accepted

Non-Target Analyses

- Goal: Better understand fate and transport throughout system
- Total Oxidizable Precursor (TOP) Assay
 - Converts Precursors to PFAAs
- Total Organic Fluorine by combustion ion chromatography
 - All organic fluorine compounds (~0.4 ppb detection limits)
 - Extractable Organic Fluorine (EOF) for solids
 - Absorbable Organic Fluorine (AOF) for aqueous

Nantucket Wastewater – Seasonal Variation

- Peak flow in summer (Jul/Aug)
- Lowest flows observed in winter (Nov/Dec/Jan)

Aerial view of Surfside WWTF

Madaket Landfill In-Vessel Composter

Nantucket Wastewater – Seasonal Variation

- Peak flow in summer (Jul/Aug)
- Lowest flows observed in winter (Nov/Dec/Jan)
- Sample dates selected with Town to represent on-island population shifts
 Surfside WWTF Effluent Flow

-2018 **---**2019 **---**2020 **---**

2021 ---

Aerial view of Surfside WWTF

- Aug. 10 & 11, 2022
- Oct. 10 & 11, 2022
- Nov. 28 & 29, 2022
- April/May, 2023

Data Qualifications

Preliminary observations only

Year 1 completed (4 rounds), Year 2 ongoing

Additional quality review needed

Benchmark – Preliminary Influent PFAS Concentrations

PFAS Concentrations Detected

Initial Observations:

- **Highest PFAS concentrations** detected in carpet cleaners and landfill leachate samples
- November Influent PFAS sum was 3x August
- Carpet cleaner sample concentrations appear higher in Aug. than Oct.
- Higher concentrations of PFAS were detected in landfill leachate samples

PFAS Concentrations Versus Load

Initial Observations:

- Not final data analysis; one sampling event remaining
- Carpet cleaners and landfill leachate loads contribute to less of the overall load compared to influent
- From initial analysis, Pump Station 1 contributes a greater load of PFAS compared to other pump stations

Collection System: Concentration vs Load

Next Steps

PFAS in Foam vs Aqueous Phase

PFOS and PFOA concentrations measured in the aqueous phase and foam/scum during biological aeration.

PFAS in Foam vs Aqueous Phase

Leachate and Foam Collection and Analysis

Surface Active Foam Fractionation (SAFF®)

Fingerprinting – Radar Plots

Preliminary Observations and Next Steps

- Based upon current data sets...
 - Concentration vs. load
 - Pump Station 1 high loading
 - Landfill leachate loading may attribute to overall WW loading
 - Spike in November influent needs further investigation
- Aeration Tank and Leachate Foam Study
 - Further evaluation of concentration and destruction technologies
- Proceed with Steps 3 and 4 of Decision Matrix

Acknowledgements

Gregg TivnanAdministration

Roberto Santamaria Michael Maynard Health Department

Dave Gray,
Charles Johnson,
Kevin Manning
Sewer Department

and many others

Zoom Nguyen

Wastewater PFAS

Mel Harclerode

Risk Communication

Jill Greene

Fire Fighting Foam

Mary Mancini

Solid Waste

Jeff Bamer
PFAS Treatment

Emily Schick

PFAS Assessment

Heather Lanza

Human Health

Robin Sasek

Graphic Designer

Rose Hanson

Public Communication

Questions?

Find more insights through our water partnership at cdmsmith.com/water and @CDMSmith

Sarah Jakositz, PE

CDM Smith

603-222-8358

JakositzSA@cdmsmith.com

Eric Spargimino, PE

CDM Smith

603-222-8366

SpargiminoEM@cdmsmith.com

