Down the Drain: An Investigation of PFAS in an Island Community's Wastewater Collection System

Outline

- Background
- Source Identification Approach
- Data Evaluation
- Ongoing Evaluation

About Nantucket

- Located 30 miles off the south coast of Cape Cod
- Solely dependent on the infrastructure and resources existing within 48 square miles
- Population of around 14,000 swells to around 80,000 or more in the summer

- Drinking water is dependent on Sole Source Aquifer
- No reasonable available alternative drinking water sources should the aquifer become contaminated
- Protection of the aquifer and public health is a top priority

Project Objectives

Develop a PFAS management plan focused on protecting groundwater resources

Create a public outreach plan to inform residents and ensure consistent communication

Long-Term Goal: Develop and implement a PFAS source control and reduction plan to reduce risks associated with PFAS releases into the environment

Project Objectives

Develop a PFAS management plan focused on protecting groundwater resources

Create a public outreach plan to inform residents and ensure consistent communication

Long-Term Goal: Develop and implement a PFAS source control and reduction plan to reduce risks associated with PFAS releases into the environment

- Sources
- Handlers and/or Transporters
- Receptors
- Pathways

- Goals
- Identification and management of PFAS at the Surfside WWTF
- Actions
- Decision matrix and sampling plan
- Evaluation of PFAS destruction technologies
- Accomplishments
- Sampling program underway
- Identification of contributions to WWTF
- Path forward for source identification and mitigation

Source Identification and Characterization

Source Identification - From EPA's PFAS Roadmap and Pretreatment (March 2023)

Recommendations for POTWs

Implement solutions

- Incorporate monitoring requirements into IU control mechanisms
- Incorporate local limits into IU control mechanisms
- Local limits can be BMPs
- Ensure IUs are in ICIS and submitting data electronically
- Notify affected public water suppliers

Purpose: Establisha long-term program to identify and assess PFAS sources to the wastewater treatment facility (WWTF) such that influent concentrations can be understood, and plans can be directed towards the goal of identifying, building a baseline off, and reducing PFAS concentrations.
WASTEWATER TREATMENT PFAS ASSESSMENT

STEP 2 PFAS monitoring program with quarterly sampling
= Continue inventory program and record keeping

Suspect Industries Identified as Potential Commercial and Industrial PFAS Users

Source Characterization

- Side-chain fluoropolymers
- PAPs/diPAPs
- NEtFOSE, NEtFOSAA, PFBS, PFOA, PFHxA

- Polymers
- Polymer raw
materials
- PFOA, FTOHs
- Polymers
- Polymer raw
materials
- PFOA, FTOHs
- Polymers
- Polymer raw
materials
- PFOA, FTOHs
- Polymers
- Polymer raw
materials
- PFOA, FTOHs

- PFOA, PFOS, PFHxS
- C8
fluorotelomers (8:2 FTS)
- C6
fluorotelomers, PFOA

- n:2 FTUCA
- n:3 FTCA
(5:3 FTCA)
- $\mathrm{n}: 2 \mathrm{FTSA}$
- EtFOSA

Data Evaluation

Laboratory Analysis

Targeted Analysis

- Year 1 - USEPA Method Modified 537.1
- Was the best available test when we started
- Year 2 - Draft USEPA Method 1633 for 40 PFAS Compounds
- Using the lab where the draft method has been accepted

Non-Target Analyses

- Goal: Better understand fate and transport throughout system
- Total Oxidizable Precursor (TOP) Assay
- Converts Precursors to PFAAs
- Total Organic Fluorine by combustion ion chromatography
- All organic fluorine compounds (~ 0.4 ppb detection limits)
- Extractable Organic Fluorine (EOF) for solids
- Absorbable Organic Fluorine (AOF) for aqueous

Nantucket Wastewater - Seasonal Variation

- Peak flow in summer (Jul/Aug)
- Lowest flows observed in winter (Nov/Dec/Jan)

Aerial view of Surfside WWTF

Madaket Landfill In-Vessel Composter

Nantucket Wastewater - Seasonal Variation

- Peak flow in summer (Jul/Aug)
- Lowest flows observed in winter (Nov/Dec/Jan)
- Sample dates selected with Town to represent on-island population shifts

Surfside WWTF Effluent Flow 7-Day Rolling Average

Aerial view of Surfside WWTF

$\longrightarrow 2018-2019=2020-2021=202$

Wastewater Sample Locations

Madaket Road Solid
Waste Management-
Landfill and Co-Compost
Facility
\square
Sewer District
Nantucket Memorial
Airport
\square
Airport Property
WWTF
Pump Stations
\square
$1-$ PS 1
$2-$ PS 2
$3-P S 3$
$4-P S 4$

Data Qualifications

- Preliminary observations only
- Year 1 completed (4 rounds), Year 2 ongoing
- Additional quality review needed

Benchmark - Preliminary Influent PFAS Concentrations

PFAS Concentrations Detected

Initial Observations:

- Highest PFAS concentrations detected in carpet cleaners and landfill leachate samples
- November Influent PFAS sum was 3x August
- Carpet cleaner sample concentrations appear higher in Aug. than Oct.
- Higher concentrations of PFAS were detected in landfill leachate samples

[^0]
PFAS Concentrations Versus Load

- PFTA
- PFTrDA

PFDoA NEtFOSAA
FOSA - PFDS - PFUnA - NMeFOSAA

PFNA
8:2FTS

- PFDA
\square PFOS \square PFNA \square PFHpS ■6:2FTS PFOA
- PFHxS - PFHPA - PFPeS \square PFHxA 4:2FTS - PFBS - PFPeA - PFBA
- Sum Load

Initial Observations:

- Not final data analysis; one sampling event remaining
- Carpet cleaners and landfill leachate loads contribute to less of the overall load compared to influent
- From initial analysis, Pump Station 1 contributes a greater load of PFAS compared to other pump stations

Data Provided for Preliminary Analysis of Consistency and Resolution of Data Sets. Data are Incomplete for Identification and Analysis of Source Concentrations.

Collection System: Concentration vs Load

- PFTA
- PFTrDA

PFDoA

- NEtFOSAA

FOSA

- PFDS
- PFUnA
- NMeFOSAA
- PFNS
- 8:2FTS
- PFDA
- PFOS
- PFNA

■ PFHpS

- 6:2FTS
\square PFOA
PFHxS
- PFHpA
[A] = August
[O] = October
[N] = November
$[\mathrm{Ap}]=$ April $\quad[\mathrm{PS}]=$ Pump Station

Next Steps

PFAS in Foam vs Aqueous Phase

\Aqueous \quad Foam

PFOS and PFOA concentrations measured in the aqueous phase and foam/scum during biological aeration.

PFAS in Foam vs Aqueous Phase

Leachate and Foam Collection and Analysis

Surface Active Foam Fractionation (SAFF®)

Fingerprinting - Radar Plots

CDM NEWEA/NEWWA | 2023 CEC/Plant Operations Conference Smith

Preliminary Observations and Next Steps

- Based upon current data sets...
- Concentration vs. load
- Pump Station 1 high loading
- Landfill leachate loading may attribute to overall WW loading
- Spike in November influent needs further investigation
- Aeration Tank and Leachate Foam Study
- Further evaluation of concentration and destruction technologies
- Proceed with Steps 3 and 4 of Decision Matrix

Acknowledgements

Gregg Tivnan

Administration

Roberto Santamaria
Michael Maynard
Health Department

Dave Gray, Charles Johnson, Kevin Manning
Sewer Department
and many others

CDM smith

Zoom Nguyen
Wastewater PFAS
Mel Harclerode
Risk Communication
Jill Greene
Fire Fighting Foam
Mary Mancini
Solid Waste
Jeff Bamer
PFAS Treatment
Emily Schick
PFAS Assessment
Heather Lanza
Human Health
Robin Sasek
Graphic Designer
Rose Hanson
Public Communication

Questions?

Find more insights through our water partnership at cdmsmith.com/water and @CDMSmith

Water
Partnership
with CDM
smith

Sarah Jakositz, PE
CDM Smith
603-222-8358
JakositzSA@cdmsmith.com

Eric Spargimino, PE
CDM Smith
603-222-8366
SpargiminoEM@cdmsmith.com

[^0]: [A] = August
 [0] = October
 $[\mathrm{N}]=$ November $\quad[P S]=$ Pump Station

