

Nut Island Odor Control: How Lasers and Data Analytics Kept Bids in the Ballpark, and Treated Air Flowing

Introduction

• The Nut Island Headworks

- Built as part of the Boston Harbor Cleanup project, facility put online in1998
- One of 4 large remote headworks that sends flow to MWRA's Deer Island Water Treatment Facility
- 400 MGD capacity
- Removes screenings and grit, then sends flow via a shaft below Boston Harbor to Deer Island Treatment Facility
- Flow through the facility is by gravity, with shaft hydraulic grade controlled by a pump station at Deer Island

Nut Island Service Area

MWRA SERVICE AREA

Water only

Sewer only

NI and Deer Island

Original Nut Island Treatment Facility

Current Facility

The new facility includes a public park that is a gem of the Hough's Neck community

Current Facility

Nutt island fishing

Houghs Necl

Nut Island

Image and Reviews Courtesy: Google Maps

Vanessa Local Guide · 246 reviews

\star \star \star \star \star a year ago

Great views of the ocean & Boston. Ocean breeze. Different trails to walk. Beach area. Great fishing spot. Lots of grass area and benches for picnic or kids play. Cute baby bunnies pop out from time to time depending on the season. Lived in this area my whole life, and we just walked it for our first time.

Richard Sanders Local Guide · 48 reviews

\star \star \star \star \star 6 years ago

A really nice little park, surrounded by the ocean on 3 sides and giving a beautiful sunset view overlooking Boston in the distance. Also a nice place to catch Pokemon, as it is a regular nest spawn area and has 8 Pokestops.

Laura Cunningham Local Guide · 85 reviews

\star \star \star \star 2 years ago

It is beautiful with lovely views. A few benches and a walking path around the whole place. The only downside is the sewage plant on site can get smelly especially on warm days.

MWRA Nut Island

4.7 ★★★★★ (159) Park

÷

÷

Derek Butler Local Guide · 16 reviews

:

\star \star \star \star \star 3 years ago

Great place to fish or walk the dog/baby. Beautifully landscaped with paved paths and incredible views of the city skyline as well as both sunrise and sunset. Large fishing pier with the ferry going by. There is even a small sandy beach if you can find it.

:

Odor Control System

- Original Odor Control system included wet scrubbers and carbon adsorbers that could be operated in series
- Reduction of industrial contributors to the southeast sewershed resulted in reduced levels of H2S and other odor causing constituents
- MWRA never operated the system in series
- Operated carbon adsorbers in cool weather months when H2S levels were relatively low
- Operated wet scrubbers in warm weather months with H2S levels were relatively high
- The entire odor control facility is underground

Odor Control System Evaluation

- Hazen was hired in 2015 to complete an evaluation and recommendations for upgrades to the odor control and HVAC systems at the facility.
- In late January of 2016, about halfway through our evaluation contract, there was a large fire in the Odor Control facility at Nut Island

Scope of Design

- The design scope included rehabilitation of the wet scrubbers, including new chemical storage and pumping systems.
- MWRA requested additional carbon capacity, and better access to the carbon adsorbers to change out spent carbon.
- MWRA requested the ability to bypass the initial wet scrubber phase of odor control
- All of this in the existing facility footprint,
 40 feet below a buried roof

Design and Construction: Fitting it in the Space

- Wet Scrubber Bypass
 - Two common bypasses around the wet scrubbers

Design and Construction: Fitting it in the Space

- Carbon Adsorber Vessels
 - 10 Dual bed vertical vessels to provide additional carbon capacity in the same footprint

10 VERTICAL VESSELS DESIGN OPTION

Design and Construction: 3D and 4D Design

 3D laser scanning of the existing facility was critical to ensuring that additional capacity, ductwork, dampers and other systems could fit within the existing building.

Design and Construction: 3D and 4D Design

3-D Visualization

- Proposed Structural Modifications
 - New Odor Control Room Access Hatches

Design and Construction: 3D and 4D Design

• 3-D visualization allowed Hazen and MWRA to get buy in from local community groups prior to final design

- Maintaining odor control throughout construction without requiring the construction of a large, intrusive temporary system was a critical project goal
- Providing detailed staging plans allowed us to means test contract constraints, and provide direction to bidding contractors
- The contract noted "suggested staging" and allowed the contractor to be creative if they chose to do so

Odor Control

 Phasing of work was critical to maintaining odor control during construction

• Benefits of Detailed Staging Plans

- Requires designers to means test project constraints
- Provides contract documents that result in consistent bids
 - Contract value over \$55 million, bids within <0.5%
- Documents provide suggested staging, allow contractor to modify the work provided they meet contract constraints
- 3D design has limited construction change orders (under 3% for all odor control and HVAC work)

Wet Scrubber Startup Testing Data! – The Dark Times – Manual Analysis

4	Α	В	С	D	E	F	G	Н	I.	J	K	L	М	
1 Nut Island Wet Scrubber Operating Data														
2														
3 STAR	T	8/23/2022 5:00												
4 END		8/24/2022 5:00												
5 INTER	RVAL	5 m												
6														
7		SCRUBBER #1			SCRUBBER #2			SCRUBBER #3						
8		KACP3_AT_3516_1	KACP3_AT_3518_1	KACP3_PDI_3506_1	KACP3_PDI_3506_1	KACP3_AT_3516_2	KACP3_AT_3518_2	KACP3_PDI_3506_2	KACP3_PDI_3506_2	KACP3_AT_3516_3	KACP3_AT_3518_3	KACP3_PDI_3506_3	KACP3_PDI_3506_3	<u>3KACP3_l</u>
														Sodium F
		Scrubber 1 pH		Scrb 1 Diff Press	Scrb 1 Diff Press	Scrubber 2 pH		Scrb 2 Diff Press	Scrb 2 Diff Press	Scrubber 3 pH		Scrb 3 Diff Press	Scrb 3 Diff Press	Storage 7
9		Analyzer	Scrubber 1 ORP	Transmitter 1A	Transmitter 1B	Analyzer	Scrubber 2 ORP	Transmitter 2A	Transmitter 2B	Analyzer	Scrubber 3 ORP	Transmitter 3A	Transmitter 3B	Level
10 23-A	ug-22 05:00:00	9.83515358	710.5126343	-0.12212076	-0.120746799	10.24437714	722.1796875	0.047961924	-0.12234579	10.15787888	759.1376343	-0.12211524	-0.115265898	3 1
1 23-A	ug-22 05:05:00	9.836058617	710.5267334	-0.122122802	-0.12074884	10.24447155	722.1495972	0.047923196	-0.122349881	10.15858269	759.0211182	-0.12211933	-0.115261808	3 1
23-A	ug-22 05:10:00	9.8369627	710.5407715	-0.122124851	-0.120750882	10.24463272	722.1195679	0.047884468	-0.122353971	10.15928745	758.904541	-0.12212342	-0.115257718	3 1
13 23-A	ug-22 05:15:00	9.837866783	710.5548096	-0.12212868	-0.120726444	10.2448597	722.0894775	0.047845744	-0.122358054	10.16001892	758.7880249	-0.122125626	-0.115263626	3 1
14 23-A	ug-22 05:20:00	9.838770866	710.5686646	-0.122133605	-0.120687105	10.24508762	722.0593872	0.047807015	-0.122362144	10.1607523	758.6714478	-0.122125626	-0.115280353	3 1
15 23-A	ug-22 05:25:00	9.83967495	710.5820923	-0.12213853	-0.120647758	10.2453146	722.0293579	0.047768291	-0.122366235	10.16148663	758.5549316	-0.122125626	-0.115297087	/ 1
16 23-A	ug-22 05:30:00	9.840579033	710.595459	-0.122143455	-0.120608419	10.24554157	721.9992676	0.047729563	-0.122370318	10.16222	758.4383545	-0.122125626	-0.115313813	3 1
17 23-A	ug-22 05:35:00	9.841483116	710.6088257	-0.122148387	-0.12056908	10.24576855	721.9691772	0.047690839	-0.122374408	10.16295338	758.3218384	-0.122125626	-0.115330547	7 1
18 23-A	ug-22 05:40:00	9.842388153	710.6221924	-0.122153312	-0.120529741	10.24599648	721.9390869	0.04765211	-0.122378498	10.16368675	758.2052612	-0.122125626	-0.115347274	4 1
9 23-A	ug-22 05:45:00	9.843292236	710.6356201	-0.122158237	-0.120490402	10.24622345	721.9090576	0.047613386	-0.122382581	10.16442108	758.0886841	-0.122125626	-0.115364008	3 1
20 23-A	ug-22 05:50:00	9.84419632	710.6489868	-0.122163162	-0.120451063	10.24645042	721.8789673	0.047574658	-0.122386672	10.16515446	757.972168	-0.122125626	-0.115380734	4 1
21 23-A	ug-22 05:55:00	9.845100403	710.6623535	-0.122168086	-0.120411716	10.24667835	721.848877	0.047535934	-0.122390762	10.16588783	757.8555908	-0.122125626	-0.115397461	1
22 23-A	ug-22 06:00:00	9.846004486	710.6757202	-0.122173019	-0.120372377	10.24690533	721.8188477	0.047497205	-0.122394845	10.16662121	757.7390747	-0.122125626	-0.115414195	j 1
23 23-A	ug-22 06:05:00	9.846908569	710.6891479	-0.122177944	-0.120333038	10.2471323	721.7887573	0.047458481	-0.122398935	10.16735554	757.6224976	-0.122125626	-0.115430921	1 1
24 23-A	ug-22 06:10:00	9.847812653	710.7025146	-0.122182868	-0.120293699	10.24735928	721.758667	0.047419753	-0.122403026	10.16808891	757.5059814	-0.122125626	-0.115447655	i 1
25 23-A	ug-22 06:15:00	9.84871769	710.7158813	-0.122187793	-0.12025436	10.2475872	721.7285767	0.047381029	-0.122407109	10.16882229	757.3894043	-0.122125626	-0.115464382	2 1
26 23-A	ug-22 06:20:00	9.849621773	710.729248	-0.122192718	-0.120215021	10.24781418	721.6985474	0.0473423	-0.122411199	10.16955566	757.2728882	-0.122125626	-0.115481116	3 1 [.]
27 23-A	ug-22 06:25:00	9.850525856	710.7426758	-0.12219765	-0.120175675	10.24804115	721.668457	0.047303576	-0.122415289	10.17028999	757.156311	-0.122125626	-0.115497842	2 1
28 23-A	ug-22 06:30:00	9.851429939	710.7560425	-0.122202575	-0.120136335	10.24826813	721.6383667	0.047264848	-0.122419372	10.17102337	757.0397949	-0.122125626	-0.115514576	3 1
29 23-A	ug-22 06:35:00	9.852334023	710.7694092	-0.1222075	-0.120096996	10.24849606	721.6083374	0.047226124	-0.122423463	10.17175674	756.9232178	-0.122125626	-0.115531303	3 1
30 23-A	ug-22 06:40:00	9.853238106	710.7827759	-0.122212425	-0.120057657	10.24872303	721.5782471	0.047187395	-0.122427553	10.17249012	756.8066406	-0.122125626	-0.115548037	1
1 23-A	ug-22 06:45:00	9.854142189	710.7962036	-0.12221735	-0.120018318	10.24895	721.5481567	0.047148667	-0.122431636	10.17322445	756.6901245	-0.122125626	-0.115564764	4 1
2 23-A	ug-22 06:50:00	9.855047226	710.8095703	-0.122222275	-0.119978979	10.24917793	721.5180664	0.047109943	-0.122435726	10.17395782	756.5735474	-0.122125626	-0.11558149	9 1 [.]
3 23-A	ug-22 06:55:00	9.855951309	710.822937	-0.122227207	-0.119939633	10.24940491	721.4880371	0.047071215	-0.122439817	10.1746912	756.4570313	-0.122125626	-0.115598224	4 1
4 23-A	ug-22 07:00:00	9.856855392	710.8363037	-0.122232132	-0.119900294	10.24963188	721.4579468	0.04703249	-0.1224439	10.17542458	756.3404541	-0.122125626	-0.115614951	1 1
5 23-A	ug-22 07:05:00	9.857759476	710.8496704	-0.122237056	-0.119860955	10.24985886	721.4278564	0.046993762	-0.12244799	10.17615891	756.223938	-0.122125626	-0.115631685	i 1
6 23-A	ua-22 07:10:00	9.858663559	710.8630981	-0.122241981	-0.119821616	10.25008678	721.3978271	0.046955038	-0.12245208	10,17689228	756,1073608	-0.122125626	-0.115648411	1 1
7 23-A	ug-22 07:15:00	9.859567642	710.8764648	-0.122246906	-0.119782276	10.25031376	721.3677368	0.04691631	-0.122456163	10,17762566	755,9908447	-0.122125626	-0.115665145	5 1
00 0	00.07.00.00	0.000.474705	740 0000045	0.400054000	0.440740007	40.05054070	704 0070 405	0.040077505	0.400400054	40.47005000	755 07 10070	0.400405000	0.445004070	
< >	Sheet1	SC1 SC2 SC3	+											Þ

Data! – The Dark Times – Manual Analysis

Data! – The Dark Times – Manual Analysis

	0	Р	Q
:	1232.421021	3432.015381	3415.771973
i	1232.390991	3430.992188	3414.712891
1	1232.361084	3429.96875	3413.654053
	1232.331055	3428.945313	3412.594971
	1232.301025	3427.922119	3411.536133
	1232.270996	3426.898682	3410.477051
1	1232.2323	3425.875244	3409.418213
	1232.191528	3424.852051	3408.359131
1	1232.150635	3423.828613	3407.300293
	1232.109863	3422.805176	3406.241455
	1232.06897	3421.781982	3405.182373
1	1232.028198	3420.758545	3404.123535
	1231.987427	3419.735107	3403.064453
1	1231.946533	3418.711914	3402.005615
	1231.905762	3417.688477	3400.946533
1	1231.864868	3416.665039	3399.887695
1	1231.824097	3415.641846	3398.828613
	1231.783203	3414.618408	3397.769775
1	1231.742432	3413.594971	3396.710938
	1231.701538	3412.571777	3395.651855
1	1231.660767	3411.54834	3394.593018
	1231.619873	3411.018555	3393.533936
1	1231.579102	3409.76123	3392.475098
1	1231.538208	3416.631348	3391.416016
	1231.497437	3406.463623	3390.357178
1	1231.456543	3421.244141	3389.298096
	1231.415771	3405.882568	3388.239258
1	1231.374878	3404.704834	3387.18042
Max		3688.644775	3671.107666
Min		3404.704834	3387.18042
Use		283 9399414	283 9272461

Data!

How do we see long term operational trends, AND short term

operational upsets?

- Long term trends demonstrate that the treatment process is behaving how we would expect.
- Short term data shows us where upsets occur, and how the system reacted.

How do we determine if systems are reacting to process upsets, or

mechanical/system upsets?

- The treated process flow is highly variable, and diurnal.
- Issues with specific equipment result in specific issues with the process.

How do we verify that the system is working how we want it to?

• Without the ability to evaluate long and short term data we cannot determine how the system is reacting to variable inputs.

Nut Island Headworks Odor Control Dashboard

Last refreshed at 11/21/2022 12:36:51 ...

What did we learn?

Data is great, as long as we can analyze and use it effectively.

Static data is not very helpful – Scalable data shows us long term trends and short term process reactions.

Utilizing BI dashboards for multi parameter data analysis is extremely effective.

With a little more finesse, these dashboards can be automated and update real time based on historian data.

What's Next?

Using data to program dynamic control strategies

- Modify chemical dosing pump operating ranges based on seasonal variables
- Predict chemical usage rates to facilitate chemical ordering
- Controls that select the odor control treatment technology based on process variables
 - Wet Scrubbing during high H2S periods
 - Carbon Adsorbers during low H2S periods
- Controls that monitor and predict carbon usage and replacement frequency

Using data and machine learning to provide dynamic process feedback

• Alarms when the process isn't necessarily out of expected range, but is not behaving like it normally does

[•] Ex: pumps are at higher speed than expected for the level of H2S incoming

- Nicholas Ellis, PE
- Hazen and Sawyer
- nellis@hazenandsawyer.com

