

Exciting Applications of Machine Learning in Water Industry

June 8, 2023

Speaker: Micah Blate, PE

Co-author: Katya Bilyk, PE

Machine Learning Overview

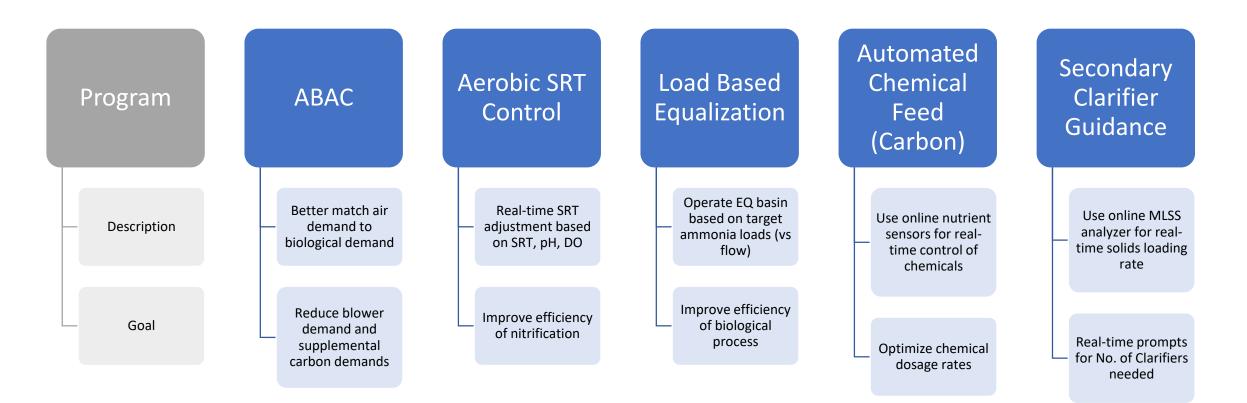
Wet Weather Flow Management at Neuse River RRF

Predicting Cake Solids

Summary

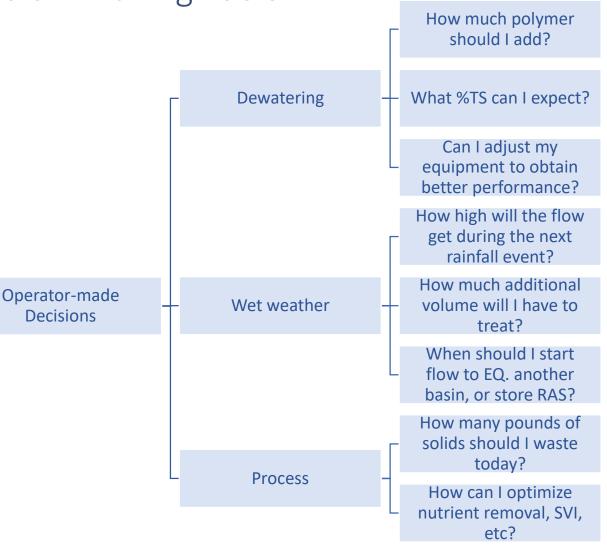
Machine Learning Overview

We've Been Able to Automate a Lot of Important Decisions at WRFs and the Result has been Lower Operating Costs and Better Effluent Quality

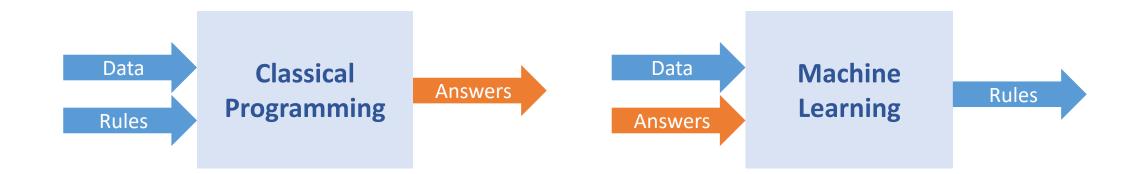


Machine Learning has the Potential to Greatly Improve Operational Efficiency with Data-Driven Decision-Making Tools

- There are still a lot of decisions we make manually
- If we had models trained to real data, we could empower operators to make optimal decisions

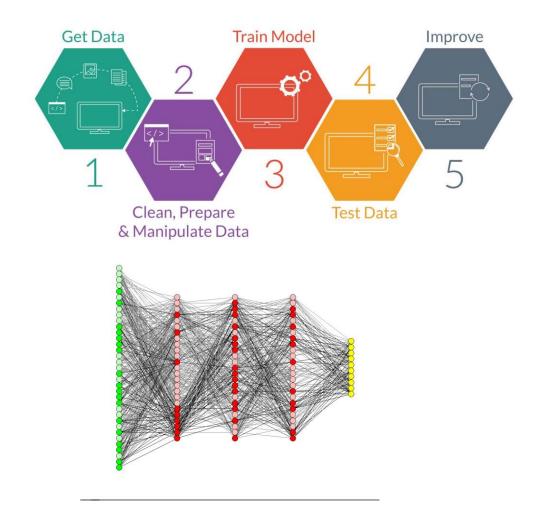


Machine Learning is Well Suited for Creating Predictive Tools because it can make Accurate Predictions without Explicitly Being Programmed to Do So

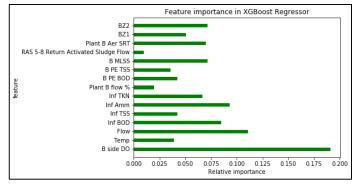


Machine Learning is an Alternative to Traditional Mechanistic Models

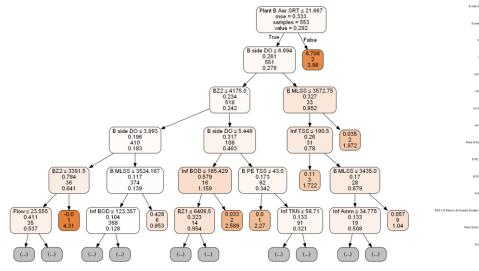
- ML uses algorithms, assign weights to independent variables, then seeks to minimize error in predicting a dependent variable
- Uses open source computer
 programming languages like Python
- Used in many fields including medicine, banking, finance, physics, etc.



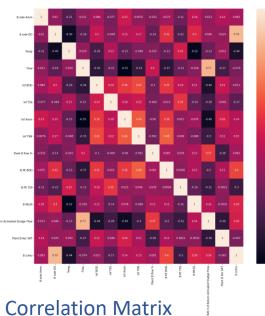
Examples of Machine Learning Tools

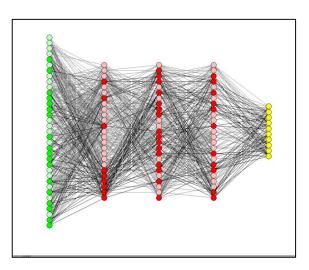


Feature Importance



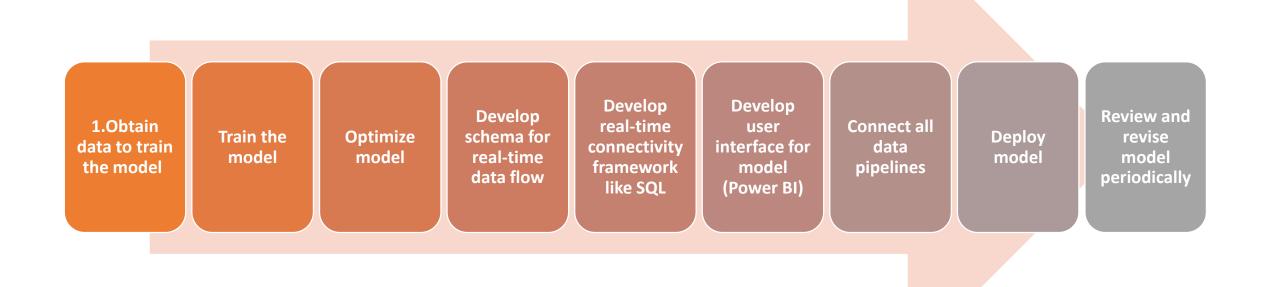
Decision Trees





Neural Networks (deep learning)

Steps to Deploying a Machine Learning Model



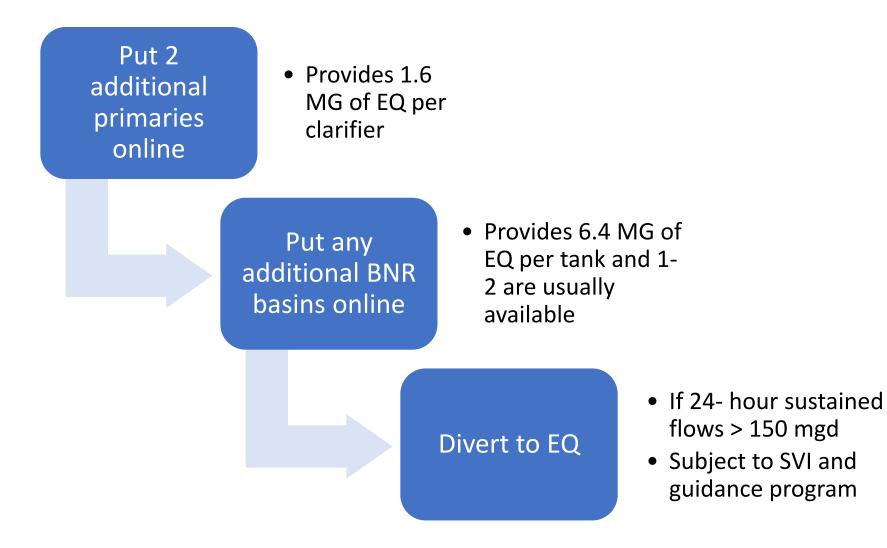
Hazen

Wet Weather Flow Management at Neuse River RRF

Neuse River Resource Recovery Facility

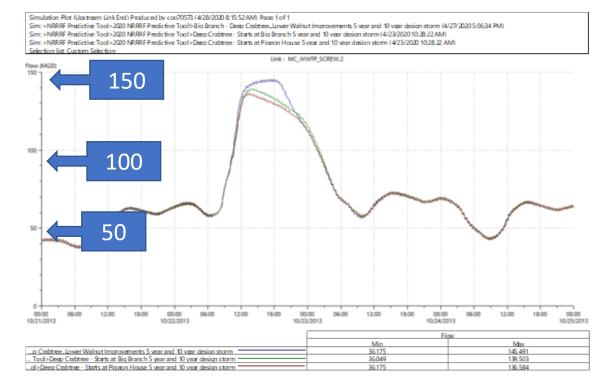
- 75 mgd design capacity
- Nutrient limits
 - TN 3 mg/L
 - TP 2 mg/L
- Desire to harvest data to inform decision making process
 - Reduce operating costs
 - Improve quality and consistency of effluent
 - Automate decision making process

Current Wet Weather Standard Operating Protocol



Why did Current Strategies Fall Short?

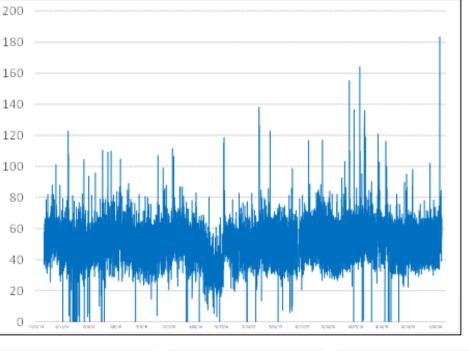
- Currently staff use pump station data to estimate peak flow and have 30-60 minutes of advance warning
- Flow monitors in collection system aren't predictive
- Doesn't tell you if flows will increase or decrease
- City has a calibrated collection systems model but no way to currently utilize that tool in a real-time fashion



Collection system model output, manually generated.

Machine Learning Approach was Developed to Predict Flow up to 72-hours in Advance

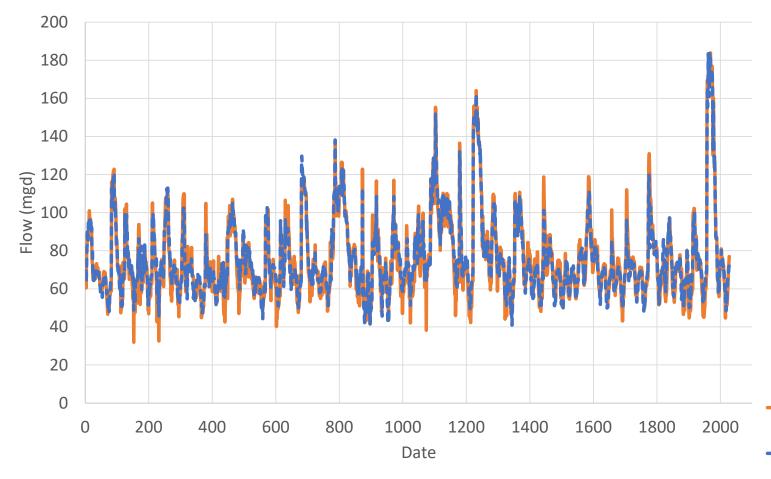
Used python machine learning algorithms to train a model to 6+ years of influent flow data as a function of explanatory variables.



Sustained flows of 184 mgd experienced Challenge meeting effluent TN and TP during wet weather events

Only 30-60 minutes of advance warning prior to this project

All Storms Predicted with Good Precision by the Model During Training

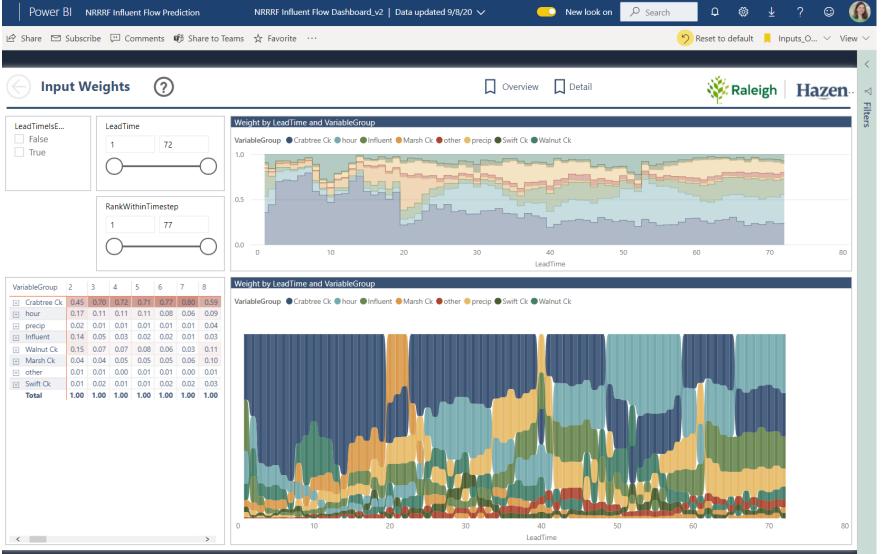


- 38 storms in 6+ years
- Accuracy is +/- 2.6 mgd 12-hours in advance
- Largest storms are predicted the best, which was the goal

—UV flow (mgd)_12hrs_actual
---UV flow (mgd)_12hrs_pred

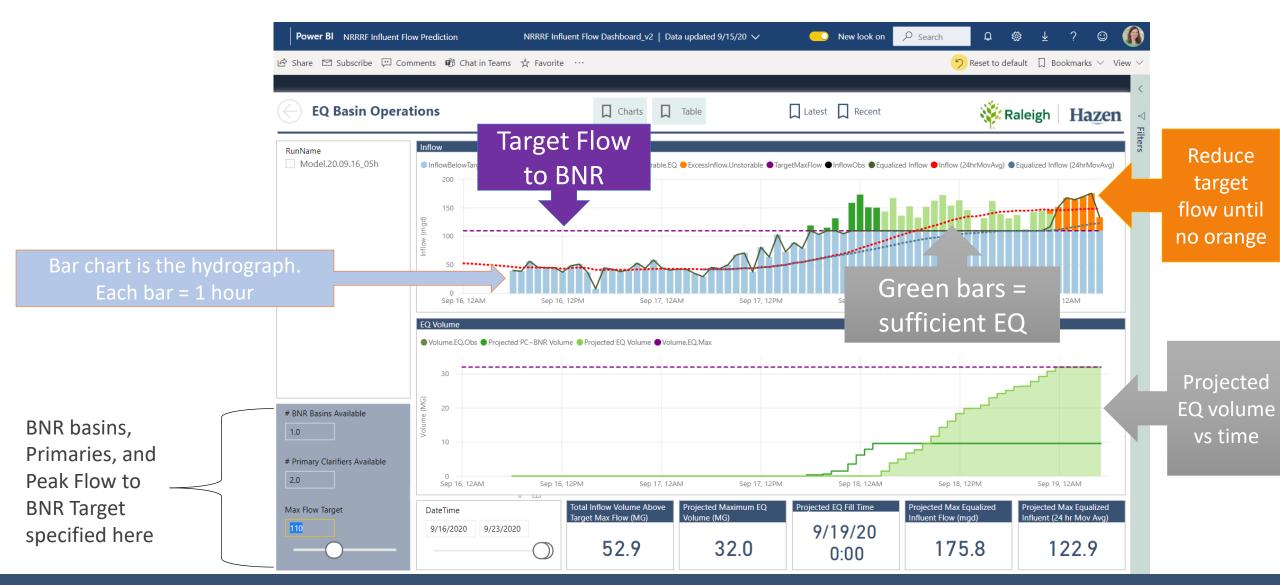
The Selected Model Is Fully Transparent

- Input weights screen shows how much influence each variable has
 - Periwinkle = Crabtree Creek streamflow
 - Light blue = hour of the day
 - Yellow = precipitation
- X-axis is time step from 1 to 72 hours
- Y-axis is percent influence



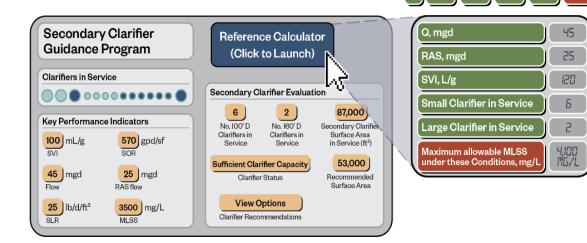
Model Prediction Screen – Updated Hourly

Hydrograph Incorporated into Dashboard for Plant Staff to Refine Operational Decisions Related to Wet Weather Management



Neuse River Resource Recovery Facility (NRRRF) Secondary Clarifier Guidance Program

- Linear regression equation derived from many SPAs
- Estimates required # clarifiers
- Calculator can solve for 5th variable



SVI Small Large

MLSS

RAS

C [ft²] = 981*Q + 909*SVI - 530*Q_{RAS} + 34.2*MLSS - 193,090

Secondary Clarifier Guidance Program Screen Allows Real-Time Determination of Secondary Clarifiers And RAS Flow Needed

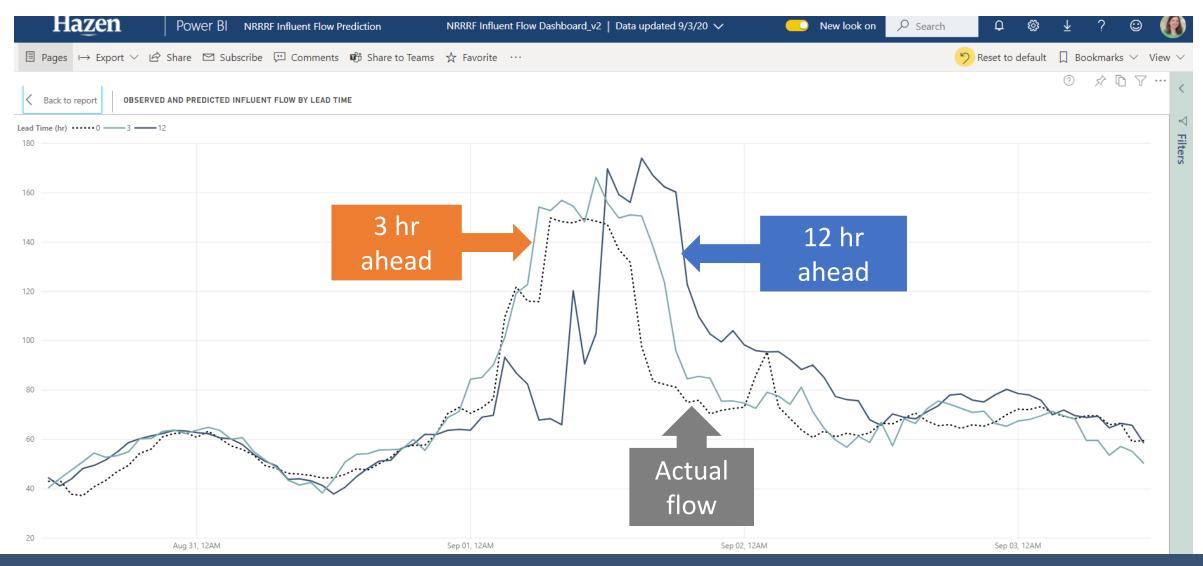
Left – displays key performance indicators for past 72 hours.

Top center – displays past flow (blue colors), projected flow (green), and maximum allowable flow (red) with all secondary clarifiers in service.

Right – calculator tool that allows operators to solve for any variable

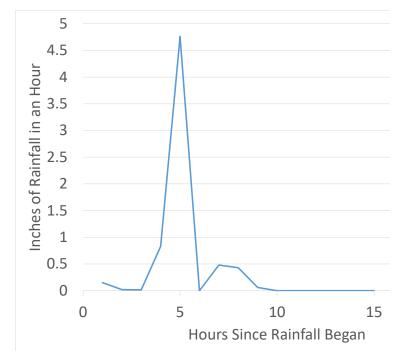
Bottom center –KPIs and combinations of small and large clarifiers that meet the criteria in the calculator tool.

Another Good Recent Prediction for a Recent 150 mgd Wet Weather Event (6.7" Rain in 9 hours) Was Well Predicted



NRRRF Maintained Its Excellent Effluent Quality During This 6.7" Rainfall Event

- 148 mgd peak hour flow
- 3.1 flow peaking factor
- 6.7" rain in 9 hours

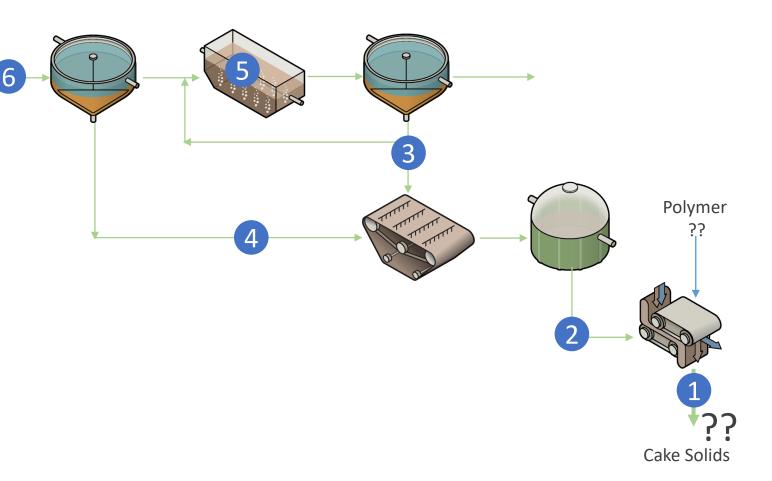


Date	Influent Flow (mgd)	Effluent Flow (mgd)	Effluent TSS (mg/L)	Effluent TP (mg/L)	Effluent Ammonia (mg/L)	Effluent TN (mg/L)
8/31	54	-	BDL	0.14	BDL	-
9/1	106	72	-	-	-	-
9/2	68	61	BDL	BDL	BDL	1.9

Dewatering Case Study

The journey sludge took to reach dewatering is very important

- Types of water associated with floc
- Floc <u>bound water</u> capacity (g Water/g VSS)
 - Associated with particulates
 - Associated with colloidal material
- Free ion (divalent cations) composition (charge and bonding capacity)
- VS/TS ratio
- Digestion chemistry
- Mechanistic modeling is still being developed (Sumo by Dynamita Process Modeling)
- Some needed data plants don't usually collect



Exploratory Questions: Is it possible to predict the cake TS% as a function of past data trends? What variables contribute to this prediction?

Machine learning can use the history of the sludge to predict dewatering

- We sought a dataset with reliable historical data, spanning many years, with significant variation in % TS
- Explored whether different machine learning models could be used to find an empirical relationship between explanatory variables and dewaterability

Exploration of Explanatory Variables to Predict %TS

Parameters believed to potentially impact dewaterability

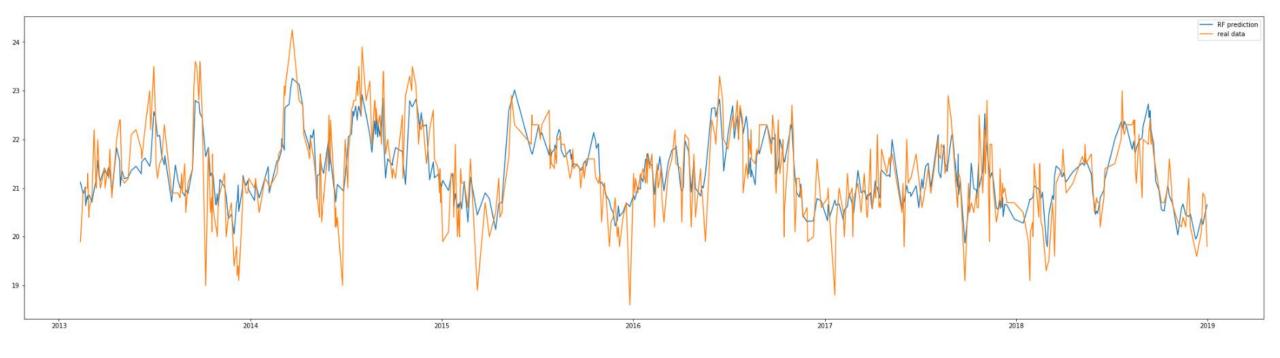
Current Values					
Polymer Dose Influent: • Flow • TKN • BOD • TSS/VSS • Temperature	 Secondary System SVI MLSS RAS Flow/Conc Solids Processing Digester VSR HRT/SRT Influent Load TPS/WAS Ratio CNash 				

Trends also Important as Past Actions Influence Solids Treatment

• 7-day

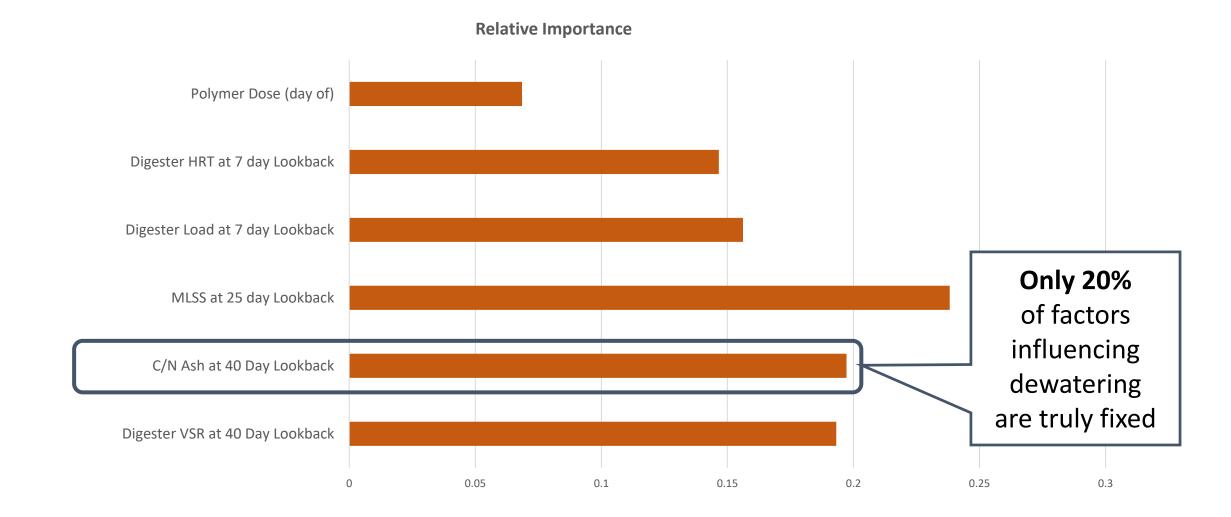
- 14-day
- 25-day
- 30-day
- 40-day
- Applied to all variables except polymer dose

Random Forest Prediction was Most Accurate



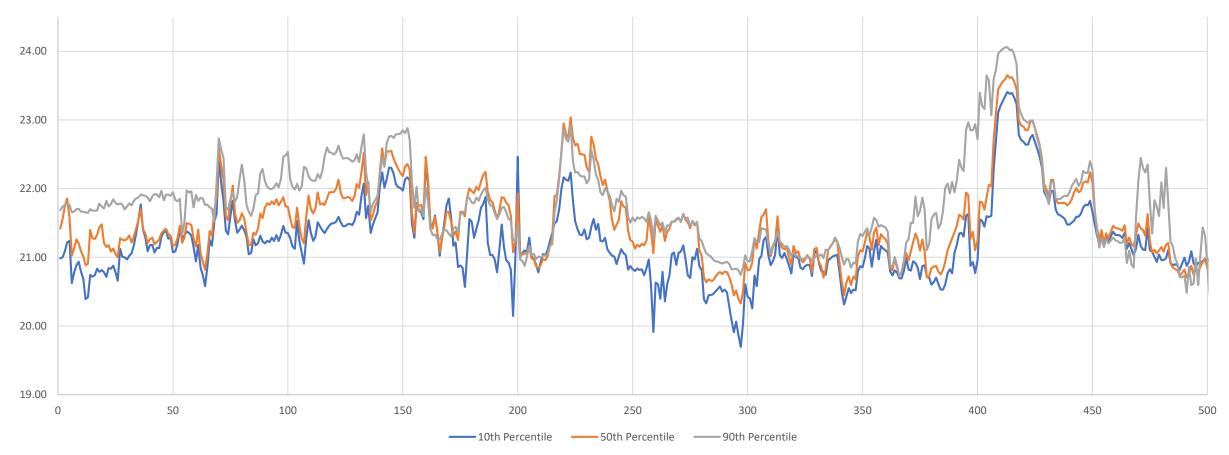
ParameterUnitMean Absolute Error% TS: +/- 0.4%

Key Variables Predicting Dewaterability and Their Relative Importance



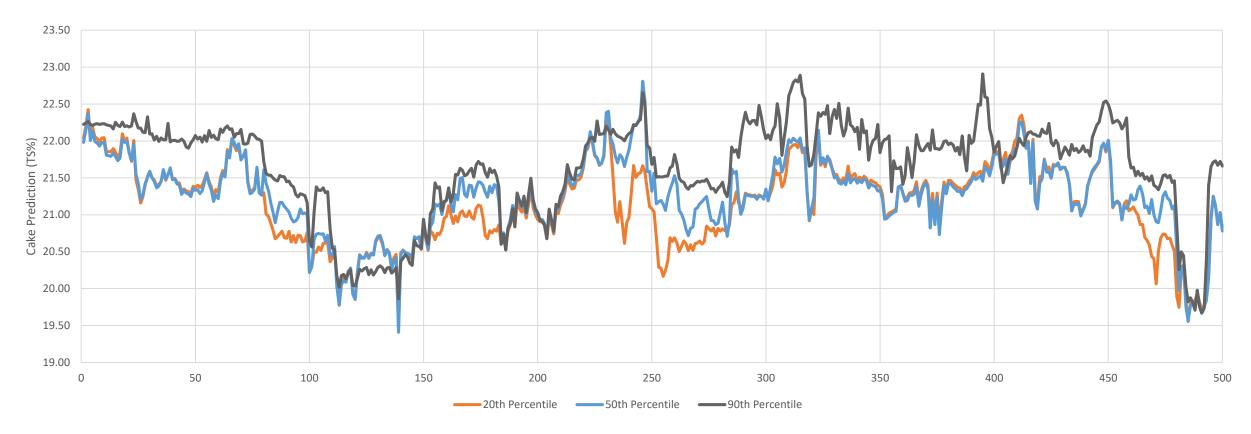
Sensitivity Analysis on C/N*Ash Shows Expected Relationship that a Higher Ratio \rightarrow Higher %TS

Adjusting C/N*Ash



The model predicts improved dewaterability with a higher C/N*ash ratio, which is consistent with research

Adjusting Digester HRT



Model developed at this plant suggest that longer HRT (potentially more volatile destruction) leads to better dewaterability

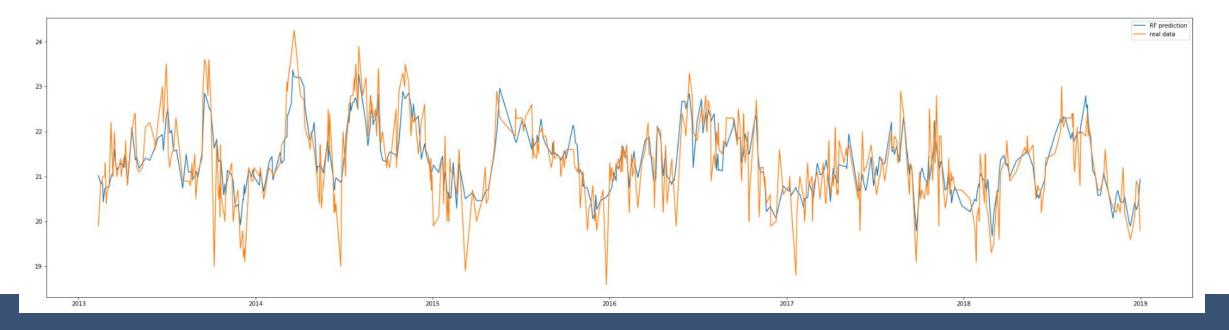
How Would This Tool be Used In Real Life?

*For example, %TS is lower than model predicts, HRT in digester is the same, but perhaps mixing became less efficient, resulting in a change in state (the role/importance of HRT).

Machine Learning Solutions Offer Great Promise in the Water Industry

- Can quickly and easily train models with plant data to understand complex relationships
- Tools can be deployed in Power BI to compliment existing operating system

- Tools can save money and optimize treatment
- Machine learning can be paired with digital twins for enhanced utility



Micah Blate, PE

mblate@hazenandsawyer.com