Hazen

EXxciting
Applications of
Machine Learning
In Water Industry

June 8, 2023
Speaker: Micah Blate, PE

Co-author: Katya Bilyk, PE




Agenda

Machine Learning Overview

Wet Weather Flow Management at Neuse River RRF

Predicting Cake Solids

Summary



Machine Learning Overview



We’ve Been Able to Automate a Lot of Important Decisions at WRFs
and the Result has been Lower Operating Costs and Better Effluent

Quality

Program

— Description

- Goal

Better match air
demand to
biological demand

Reduce blower
demand and
supplemental

carbon demands

Aerobic SRT
Control

Real-time SRT
— adjustment based
on SRT, pH, DO

| Improve efficiency
of nitrification

Load Based
Equalization

Operate EQ basin
based on target

ammonia loads (vs

flow)

Improve efficiency
of biological
process

Automated
Chemical

Feed
(Carbon)

Use online nutrient
| sensors for real-
time control of
chemicals

| Optimize chemical
dosage rates

Secondary
Clarifier
Guidance

Use online MLSS
| analyzer for real-
time solids loading
rate

Real-time prompts
— for No. of Clarifiers
needed



Machine Learning has the Potential to Greatly Improve Operational
Efficiency with Data-Driven Decision-Making Tools

« There are still a lot of
decisions we make
manually

* |f we had models trained to
real data, we could
empower operators to
make optimal decisions

Operator-made
Decisions

|

Dewatering -

Wet weather —+

Process {

How much polymer
should | add?

What %TS can | expect?

Can | adjust my
equipment to obtain
better performance?

How high will the flow
get during the next
rainfall event?

How much additional
volume will | have to
treat?

When should | start
flow to EQ. another
basin, or store RAS?

How many pounds of
solids should | waste
today?

How can | optimize
nutrient removal, SVI,
etc?



Machine Learning is Well Suited for Creating Predictive Tools because it can
make Accurate Predictions without Explicitly Being Programmed to Do So
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Machine Learning is an Alternative to Traditional Mechanistic Models

Get Data Train Model Improve

* ML uses algorithms, assign weights to
independent variables, then seeks to
minimize error in predicting a
dependent variable

 Uses open source computer e Hienss ey
programming languages like Python & Manipulate Data

 Used in many fields including
medicine, banking, finance, physics,
etc.
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Steps to Deploying a Machine Learning Model

1.0btain
data to train
the model

Train the
model

Optimize
model

Develop
real-time
connectivity
framework
like SQL

Develop
schema for
real-time
data flow

Develop
user Connect all
interface for data
model pipelines
(Power BI)

Review and
revise
model

periodically




Wet Weather Flow Management
at Neuse River RRF



Neuse River Resource Recovery Facility

e 75 mgd design capacity
* Nutrient limits

* TN 3 mg/L

* TP 2 mg/L

* Desire to harvest data to inform decision
making process
* Reduce operating costs
* Improve quality and consistency of effluent

Automate decision making process




Current Wet Weather Standard Operating Protocol

Put 2 brovides 1.6
" e Provides 1.
adfjltlo!’\al MG of EQ per

primaries clarifier

online

e Provides 6.4 MG of

Put any
additional BNR EQ per tank and 1-
2 are usually

basins online available

e If 24- hour sustained
flows > 150 mgd

e Subject to SVI and
guidance program

Divert to EQ




Why did Current Strategies Fall Short?

*  Currently staff use pump station data to
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*  Flow monitors in collection system aren’t

predictive Qm | / \K\*\

 Doesn’t tell you if flows will increase or
decrease

e  City has a calibrated collection systems
model but no way to currently utilize that TR e We g W e e e we  ve e e we W We ma
tool in a real-time fashion
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Collection system model output, manually generated.



Machine Learning Approach was Developed to Predict
Flow up to 72-hours in Advance

L 3 7/ ' p 180
, 5 \i\\ E s -
S\ . T
120
Rainfall Streamflow Past Influent Hour of Day Collection

Flow to System 100

NRRRF Improvements -

&0

40
Used python machine learning algorithms to train a Challenge Only 30-60
model to 6+ years of influent flow data as a function of Sustained flows of ~ meeting effluent minutes of

) 184 mgd TN and TP during advance warning

explanatory variables. experienced wet weather prior to this

events project




All Storms Predicted with Good Precision by the Model
During Training

Flow (mgd)

200

180

160

140

=
N
o

[
o
o

(0]
o

(o))
o

I
o

N
o

o

* 38 storms in 6+ years

’ * Accuracy is +/- 2.6
mgd 12-hours in
advance

* Largest storms are
N predicted the best,
which was the goal

—UV flow (mgd)_12hrs_actual
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Date ---UV flow (mgd)_12hrs_pred




The Selected Model Is
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Model Prediction Screen — Updated Hourly
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Hydrograph Incorporated into Dashboard for Plant Staff to Refine Operational
Decisions Related to Wet Weather Management
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Neuse River Resource Recovery Facility (NRRRF) Secondary Clarifier

Guidance Program

Linear regression equation derived
from many SPAs

Estimates required # clarifiers
Calculator can solve for 5t variable

ﬁSecondary Clarifier

Select Variable to Solve for
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[ . . 3
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"
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\ Y. -
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sV SOR
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45 J med 25 J mgd Clarifier Status Recommen ded
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Secondary Clarifier Guidance Program Screen Allows Real-Time Determination of
Secondary Clarifiers And RAS Flow Needed

Secondary Clarifier Guidance @

-‘;: Raleigh Hazen
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Clarifier Surface Area =
88,550 sf

Left — displays key
performance indicators for
past 72 hours.

Top center — displays past
flow (blue colors), projected
flow (green), and maximum
allowable flow (red) with all
secondary clarifiers in service.

Right — calculator tool that
allows operators to solve for
any variable

Bottom center —KPlIs and
combinations of small and
large clarifiers that meet the
criteria in the calculator tool.




Another Good Recent Prediction for a Recent 150 mgd
Wet Weather Event (6.7” Rain in 9 hours) Was Well Predicted
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NRRRF Maintained Its Excellent Effluent Quality During
This 6.7” Rainfall Event

B

w

. 148 mgd peak hour flow
. 3.1 flow peaking factor
. 6.7” rainin 9 hours

=

o

Inches of Rainfall in an Hour
N
(@) (03] = (0] N (0] w (0] B (0] (Oa]

0 5 10 15
Hours Since Rainfall Began
Influent Effluent Effluent
Flow Flow Effluent | Effluent TP Ammonia Effluent

Date (mgd) (mgd) | TSS(mg/L)| (mg/L) (mg/L) TN (mg/L)
8/31 54 - BDL 0.14 BDL -

9/1 106 72 - - - -

9/2 68 61 BDL BDL BDL 1.9




Dewatering Case Study



The journey sludge took to reach dewatering is very important

* Types of water associated with floc

* Floc bound water capacity
(g Water/g VSS) 6
* Associated with particulates

* Associated with colloidal material

* Free ion (divalent cations) composition
(charge and bonding capacity)

Polymer

e VS/TS ratio [

* Digestion chemistry

* Mechanistic modeling is still being
developed (Sumo by Dynamita Process
Modeling)

* Some needed data plants don’t usually PP,

collect Cake Solids




Exploratory Questions: Is it possible to predict the cake TS% as a function
of past data trends? What variables contribute to this prediction?

@

Identify Potential Evaluate/ Analyze Develop Predictive Iterate and
Parameters Parameters Tools Refine Tools

Q

N
A [ s




Machine learning can use the history of the sludge

to predict dewatering

* We sought a dataset with
reliable historical data,
spanning many years, with
significant variation in % TS

* Explored whether different
machine learning models could
be used to find an empirical
relationship between
explanatory variables and
dewaterability

Cake Solids, % TS
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Exploration of Explanatory Variables to Predict %TS q

Parameters believed to potentially impact dewaterability

Current Values Trends also Important as Past Actions

Influence Solids Treatment

Polymer Dose Secondary System o 7-day
o SVI
Influent: o MLSS e 14-day
e Flow
¢ RAS Flow/Conc -
T e 25-day
* BOD Solids Processing e 30-day
* TSS/VSS e Digester VSR
e Temperature * HRT/SRT > Albrey
e Influent Load e Applied to all variables
» TPS/WAS Ratio except polymer dose
* CNash



Random Forest Prediction was Most Accurate X

Parameter ‘ Unit
Mean Absolute Error ‘ % TS: +/- 0.4%




Key Variables Predicting Dewaterability and Their Relative Importance

Relative Importance

Only 20%
MLSS at 25 day Lookback
of factors
[ influencing
C/N Ash at 40 Day Lookback )
dewatering
Digester VSR at 40 Day Lookback are trU Iy flxed

0 0.05 0.1 0.15 0.2 0.25 0.3




Sensitivity Analysis on C/N*Ash Shows Expected Relationship that a y
Higher Ratio = Higher %TS \

Adjusting C/N*Ash
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The model predicts improved dewaterability with a higher C/N*ash ratio, which is consistent with research



Model Also Shows that the Longest HRT = Higher %TS X
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Model developed at this plant suggest that longer HRT (potentially more volatile destruction) leads to
better dewaterability




How Would This Tool be Used In Real Life?

Big Picture Insights Planning Day-to-Day

Estimate annual _
Learn how your plant behaves . Predict %TS
operating costs

Verify those Identify potential Optimize dewatering

conclusions are sound efficiency losses* machine settings

Iterate and revise
model until the Identify seasonal trends
conclusions make sense

Increase Ib polymer/DT
if low %TS expected

*For example, %TS is lower than model predicts, HRT in digester is the same, but perhaps mixing
became less efficient, resulting in a change in state (the role/importance of HRT).




Summary



Machine Learning Solutions Offer Great Promise in the Water

Industry
* Can quickly and easily train models with e Tools can save money and optimize
plant data to understand complex treatment
relationships

 Machine learning can be paired with
* Tools can be deployed in Power Bl to digital twins for enhanced utility
compliment existing operating system
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Questions

Micah Blate, PE


mailto:mblate@hazenandsawyer.com

