Separation vs. Storage

Dawn of CSO Abatement

June 2023

Jess Locke, EIT Matthew Corbin, PE

WRIGHT-PIERCE 🚝 Engineering a Better Environment Project Background Alternative Analysis Recommendation Next Steps Thank You

Haverhill Sewer Collection System

- 134 miles of gravity sewers
- 66 miles of combined sewers
- 36 pump stations
- 15 active combined sewer regulators
 - 13 combined sewer outfalls
- WWTF 10 MGD ADF

Locke Street Area Combined Sewer System

- 127,000 LF of combined sewers
- 3 combined sewer regulators
 - Winter Street
 - Winter and Hale
 - Center Barrel (Locke Street)
- 2 Combined Sewer Outfalls
 - One for 2 CSO regulators on Winter Street
 - One for Center Barrell
- Frequency of CSOs
 - 。 77 in 2021
 - 。 57 in 2022

Consent Decree

- Finalized in November 2016
- Between EPA, MassDEP, and City of Haverhill
- Requirements included
 - Start continuous monitoring of CSO outfalls
 - Submitting a Final CSO Long Term Control Plan Report
 - Feasibility study to evaluate Green Infrastructure types
 - Prevent CSO discharges during 3-month, 24-hour design storm

Starting Off on the Right Foot

Understanding your community's combined sewer system

Question 1:

It is important to understand a community's system before making recommendations to address CSOs.

A. TrueB. False

Question 1:

It is important to understand a community's system before making recommendations to address CSOs.

Field Investigations

- Flow monitoring
- CCTV pipe inspections

- Smoke testing
- Manhole inspections

Question 2:

Which field work should be performed to understand a municipality's sewer system?

- A. Flow monitoring
- **B.** Manhole inspections
- C. Smoke testing
- D. All of the above

Question 2:

Which field work should be performed to understand a municipality's sewer system?

- A. Flow monitoring
- **B.** Manhole inspections
- C. Smoke testing
- D. All of the above

Alternatives Analysis

Storage

- 330,000-gal storage tank
- 24-inch diameter relief sewer

Separation

- Separating 32,000 ft of combined sewers
- Rehabilitating existing sewer system

Storage Considerations

Advantages

- Small construction area
- Little to no interference with other buried utilities
- Minimal modifications to existing sewer, storm drains, and outfalls

Disadvantages

- Routine maintenance
- Odor control
- Inflow is stored but not removed still need to transport and treat
- Need to obtain space to construct storage tank

Separation Considerations

Advantages

- Permanently removes sources of public inflow
- Little operation and maintenance required
- Combined system can stay in service throughout construction

Disadvantages

- Large construction area
- Buried utility conflicts
- Sewer rehab needs
- Private inflow
- Stormwater capacity downstream

So, what is downstream?

Hale Street

Winter Street

Primrose Street

Additional Considerations for Sewer Separation

Railroad Crossing

Permitting Requirements

Question 3:

Which of the following should be considered when evaluating CSO abatement alternatives?

A. Amount of inflow that needs to be removed/stored to reduce CSOs

- **B.** Construction limitations and potential utility conflicts
- C. Downstream impacts and potential permitting requirements
- D. All of the above

Question 3:

Which of the following should be considered when evaluating CSO abatement alternatives?

A. Amount of inflow that needs to be removed/stored to reduce CSOs

- **B.** Construction limitations and potential utility conflicts
- C. Downstream impacts and potential permitting requirements
- D. All of the above

Costs by Alternative

Alternative	Cost Estimate
Sewer Separation	\$21.7M
Sewer Separation + Infiltration Rehabilitation + Upsizing Storm Drains & Outfalls	\$40.9M
330,000 Gallon Storage Tank + 24-inch Relief Sewer	Capital Cost: \$18.9M 20-year lifecycle cost: \$20.0M

What is the best solution to meet Haverhill's needs?

Sewer Separation

with Infiltration Rehabilitation and Upsizing Storm Drains & Outfalls

- Phasing
- Design
- Construction
- Post-construction flow metering

Where are we now?

City of Haverhill, MA

Robert Ward DPW Director

Paul Jessel Collection System Supervisor

Wright-Pierce

Laurie Perkins, PE Project Manager

Contact Information

Jess Locke, EIT

jess.locke@wright-pierce.com 978.416.8007

Matthew Corbin, PE

matthew.corbin@wright-pierce.com 978.416.8018

