

## 2023 Joint NYWEA / NEWEA Spring Conference Optimizing Secondary Clarifiers -From Conception to Field Testing







#### Agenda

- 1 Overview of FEV, Existing Clarifiers & Challenges
- 2 What To Do?

- 5 Lessons Learned
- 6 Questions and Acknowledgements

- **3** Field Verification Testing
- **4** Optimization Modifications



## Today's Presenters



Alan Oates, NYS 4A

Assistant Chief WRRF Operator Monroe County



Hannah Rockwell, PE

Deputy Project Manager Arcadis



SC5 was

selected as the

**Test Clarifier** 

### FEV WRRF

Rochester, NY

 Original construction 1900s, last major upgrade in 1970s

ML D-BO

CLARIFIER

IL RUR IL U.S. B.

1

- Combined sewer
- Permitted for 135-mgd through high-rate secondary treatment
- Peak flow through biological treatment of 200-mgd, peak influent of 600-mgd
- Solids retention time 2 to 4 days with anaerobic selectors in plug flow, step feed, or contact stabilization
- Effluent limits:
  - Phosphorus 1.0 mg/L
  - TSS 30/45 mg/L; 85% removal
  - SS 0.3/0.5 mL/L
  - BOD 30/45 mg/L; 85% removal



#### Secondary Clarifiers – Existing Conditions

- Existing Secondary Clarifiers:
  - Six 145-foot diameter squircles
  - Installed in 1970s beyond useful life
  - Circular collector mechanism
  - No corner sweeps corner infills in 1990s
  - 14.5-foot side water depth
  - Cone bottom with slope of 1 to 12-feet
  - Center feed
  - Peripheral effluent
  - Scrappers with draft tubes
  - WAS hopper at center





### **Observations of Existing Clarifier Performance**

| Ten State Standards       | FEV WRRF<br>Secondary<br>Clarifiers |
|---------------------------|-------------------------------------|
| Solids Loading Rate (SLR) |                                     |
| Less than 40 lbs/day/sf   | 28 to 31<br>lbs/day/sf*             |
| Surface Overflow Rate     |                                     |
| Minimum = 900 gpd/sf      | 113 mgd                             |
| Maximum = 1,200 gpd/sf    | 150 mgd                             |

### FEV experienced performance challenges:

- NYS DEC issued Consent Order Jan 2018
- Consent Order required improvements to Secondary Clarifiers be completed by 12/31/2026

Meet permit at 135 mgd

Performance highly dependent on aeration

## Performance challenges at high flow rates

- poorly functioning sludge removal mechanisms
- high sludge blankets
- internal density currents (temperature changes!)
- · rapid flow changes
- uneven flow resulting from the hybrid square/circle shape

## What to Do?







### Project Phasing – Begin with a Test Clarifier

- Test Clarifier
  - Field
- Field
   Verification
   Testing
   Optimization **Modifications**



- Remaining  $\mathbf{N}$ Clarifiers hase
  - MCC
    - Replacement
  - **Clarifier Drives**



#### **CFD Model Validation**

- 2016 Testing by Clarifier Performance Evaluations, Inc.
  - Velocity Estimates
  - Drogue Results
  - Vertical Solids Profile
  - Influent and Effluent Concentrations
- Refined model with small changes to model parameters that control turbulence levels and solids settlement



Solids Profile in the Existing FEV Secondary Clarifiers



Velocity Profile in the Existing FEV Secondary Clarifiers



# Inlet Configuration – Sludge Blanket Disturbance

#### **Existing Condition – 6.4 feet**



LA-EDI – 2.6 feet

#### **3.8-FOOT REDUCTION IN SLUDGE BLANKET DISTURBANCE FROM EXISTING CONDITION**



# Cylindrical Baffle Evaluation

#### **Existing clarifier:**

- Strong density currents
- Upwelling at the sidewalls

#### Proposed cylindrical baffle:

- Minimize density currents
- Reduce upwelling

#### Based on the results of the EDI evaluation, the LA-EDI was used in the model to evaluate the cylindrical baffle options







### Results of CFD Modeling Test Clarifier Design Components

| Component          |                | Test Clarifier<br>Design Value | CFD Modeling<br>has limitations                           |  |  |  |  |  |  |
|--------------------|----------------|--------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|
| Inlet              |                | LA-EDI                         | ŢĹ                                                        |  |  |  |  |  |  |
| Foodwall           | Radius (FT)    | 21                             | Field Verification                                        |  |  |  |  |  |  |
| reedwell           | Depth (FT)     | 7.5                            | Testing!                                                  |  |  |  |  |  |  |
|                    | Height (FT)    | 9.6                            |                                                           |  |  |  |  |  |  |
| Cylindrical Baffle | Radius (FT)    | 36.25 (1/2 clarifier radius)   |                                                           |  |  |  |  |  |  |
|                    | Floor Gap (FT) | 1*                             | - The cylindrical baffle was                              |  |  |  |  |  |  |
| Effluent Weirs     |                | Perimeter Weirs                | an additional 1ft segment to                              |  |  |  |  |  |  |
| Corner Launders    |                | Removed                        | close the floor gap for testing ar optimization purposes. |  |  |  |  |  |  |





### **Test Clarifier Improvements - Construction**

## **Field Verification Testing**



### Field Verification Testing – Methodology

- Compare Test Clarifier to SC 2
- Identify potential areas for further optimization
- Over 200 samples collected by staff from MCDES and Arcadis
- Samples analyzed by MCDES' laboratory for total suspended solids (TSS), dispersed suspended solids (DSS), and flocculated suspended solids (FSS)

| Flow Rates               | •Overflow rate maintained at 17-mgd and 22-mgd<br>•RAS maintained at 8-mgd      |  |  |  |
|--------------------------|---------------------------------------------------------------------------------|--|--|--|
| Dye/Flow Curve           | <ul> <li>Measured concentration of dye in effluent at time intervals</li> </ul> |  |  |  |
| Vertical Solids Profiles | •Collected TSS measurements along walkway                                       |  |  |  |
| Current Measurements     | Drogue to measure currents                                                      |  |  |  |
| DSS and FSS              | •MLSS $\rightarrow$ Dispersed SS $\rightarrow$ Flocculated SS                   |  |  |  |





### Field Verification Testing – Results

#### Improvements

- Reduced density currents
- Increased hydraulic efficiency at high flow
- Reduced rate of rotation

#### •Continuing Challenges

- Loss of solids in corners
- RAS rate is too low

## **Optimization Modifications**

**Benefits of Stepwise Approach** 



#### Optimization Modification Timeline

Performing the modifications incrementally, in a stepwise approach, with field verification testing between each modification was essential in understanding which modification yielded positive results

|                                                   |      | 2040 |      |   | 2020 |      |   |   | 2024 |   |   |   | 2022 |   |   |   |
|---------------------------------------------------|------|------|------|---|------|------|---|---|------|---|---|---|------|---|---|---|
| Description                                       | 2019 |      | 2020 |   |      | 2021 |   |   | 2022 |   |   |   |      |   |   |   |
|                                                   |      | 2    | 3    | 4 | 1    | 2    | 3 | 4 | 1    | 2 | 3 | 4 | 1    | 2 | 3 | 4 |
| Test Clarifier Improvements                       |      |      |      |   |      |      |   |   |      |   |   |   |      |   |   |   |
| Initial Field Tests                               |      |      |      |   |      |      |   |   |      |   |   |   |      |   |   |   |
| Modifications                                     |      |      |      |   |      |      |   |   |      |   |   |   |      |   |   |   |
| Verification Testing                              |      |      |      |   |      |      |   |   |      |   |   |   |      |   |   |   |
| Effluent Weir Blocking and Corner Lattice Baffles |      |      |      |   |      |      |   |   |      |   |   |   |      |   |   |   |
| Field Testing                                     |      |      |      |   |      |      |   |   |      |   |   |   |      |   |   |   |
| January 2021 Modifications                        |      |      |      |   |      |      |   |   |      |   |   |   |      |   |   |   |
| Field Testing                                     |      |      |      |   |      |      |   |   |      |   |   |   |      |   |   |   |
| Stamford Baffle Installation                      |      |      |      |   |      |      |   |   |      |   |   |   |      |   |   |   |
| Field Testing                                     |      |      |      |   |      |      |   |   |      |   |   |   |      |   |   |   |
| Effluent Trough Design and Fabrication            |      |      |      |   |      |      |   |   |      |   |   |   |      |   |   |   |
| Effluent Trough Replacement                       |      |      |      |   |      |      |   |   |      |   |   |   |      |   |   |   |
| Field Testing                                     |      |      |      |   |      |      |   |   |      |   |   |   |      |   |   |   |
| Cylindrical Baffle Modification                   |      |      |      |   |      |      |   |   |      |   |   |   |      |   |   |   |
| Field Testing                                     |      |      |      |   |      |      |   |   |      |   |   |   |      |   |   |   |

## Improve RAS Rate

**Optimization Modifications** 



#### Improve RAS Rate – Draft Tubes and Plow Blades





### Improve RAS Rate - Increase Draft Tube Opening

-9" MODIFIED

Increase the size of the openings from the 10 draft tubes (sludg control valves) into the RAS b limit headloss.







### Improve RAS Rate - RAS Pipe Opening

## Decrease the turbulence of the RAS entering the RAS pipe

- RAS ports in the influent column were widened
- Height of the RAS box was extended by 6-inches





## Improve Effluent TSS

**Optimization Modifications** 



#### Density Current (Stamford) Baffle Installation

10.5

Test Clarifer



BEFORE

15.2

20.2

SC 2 Average





#### Cylindrical Baffle Modification









## Lessons Learned



### What Did We Learn?

| Why Optimize and<br>What Are The Options | Performance vs Cost – EDIs, Cylindrical<br>Baffles, and Stamford Baffles |
|------------------------------------------|--------------------------------------------------------------------------|
| Why Phase<br>Improvements                | <u>\$4M Avoided Costs</u> in Phase 2                                     |
| Benefits of A<br>Stepwise Approach       | Understand Cause and Effect<br><u>Return on Investment</u>               |





This project would not have been a success without the contributions from the staff at: Monroe County Department of Environmental Services Monroe County Pure Waters John Esler with Clarifier Performance Evaluations, Inc.



#### **Questions & Discussion**

S



#### Alan Oates, NYS 4A

Assistant Chief WRRF Operator Monroe County

alanoates@monroecounty.gov



#### Hannah Rockwell, PE

Project Engineer Arcadis 585-662-4056 hannah.rockwell@arcadis.com