

Monroe County Investing in the Future

NYWEA/NEWEA Joint Spring Technical Conference & Exhibition

Session 6.2 Thursday, June 8, 2023

Agenda

- 1 Overview of FEV
- 2 Background to FEV Capital Improvement Program
- **3** Approach to Investing in the Future of FEV
- 4 Aeration System Operational Improvements and Increased Flexibility

- 5 Secondary Clarifiers Beyond Replace in Kind
- 6 Electrical System Resiliency and Reliability
- 7 Lessons Learned and Current Status
- 8 Questions and Acknowledgements

Today's Presenters

Matthew Czora, PE Program Manager Arcadis

Corky Kelsey, Grade 4A Chief WRRO MCDES

Overview of FEV

FEV WRRF

- Rochester, NY
- Original construction 1900s, last major upgrade in 1970s
- Combined sewer
- Permitted for 135-mgd
- Peak influent of 600-mgd
- Effluent limits:
 - Phosphorus -1.0 mg/L
 - TSS 30/45 mg/L; 85% removal
 - SS 0.3/0.5 ml/L
 - BOD 30/45 mg/L;
 85% removal

Background to FEV Capital Improvement Program

History

Program Goals

Program Components

Program Goals Program Components Maintain Permit Improve Permit **C**ompliance Compliance Expand Increase Capabilities for Operational Staff **F**lexibility Improve Maximize Resiliency and ROI Reliability

Approach to Investing in the Future of FEV

Beyond Replace in Kind

By piloting and testing improvements in a phased approach with field validation testing between the alterations prior to full-scale construction/implementation, the incremental benefit of each improvement could be measured, and a cost benefit analysis could be completed to determine the full-scale design. This approach – design, pilot, test, modify, test, implement at full scale – allowed MCDFS to maximize return on investment and improve operational capabilities for the staff.

Desktop Analysis

Full Scale Pilot

Field Verification

Contract Organization

Aeration System Operational Improvements and Increased Flex

Aeration System – Existing Conditions

- 20 Aeration Basins
- 4 Quadrants
- 10 Centrifugal Turbo Blowers
- 900 to 1200 SCFM per Basin
- 3.0 mg/L Dissolved Oxygen
- Non-aerated Selector
- Plug Flow

Aeration System – Challenges

No Basin Mode Flexibility

No Tools to Respond to Wet Weather Events Reduced Resources for Moving Gates

Complex Programming Logic

Insufficient Blower Capacity

Aeration System – The Solution

Aeration System – The Solution

- Complete Mix, Full Air 8 Basins
- 2 Additional Blowers
- Automation of Influent Gates
- New Programming Implemented for Blower and DO Control

Secondary Clarifiers -Beyond Replace in Kind

Secondary Clarifiers – Existing Conditions

- Existing Secondary Clarifiers:
 - Six 145-foot diameter squircles
 - Installed in 1970s beyond useful life
 - Circular collector mechanism
 - No corner sweeps corner infills in 1990s
 - 14.5-foot side water depth
 - Cone bottom with slope of 1 to 12-feet
 - Center feed
 - Peripheral effluent
 - Scrappers with draft tubes
 - WAS hopper at center

Secondary Clarifiers - Challenges

Meeting permit at 135 mgd

Performance highly dependent on aeration

Performance challenges at higher flow rates

- poorly functioning sludge removal mechanisms
- high sludge blankets
- internal density currents (temperature changes!)
- rapid flow changes
- uneven flow resulting from the hybrid square/circle shape

ALL CONTRIBUTING TO LOSS OF SOLIDS OVER THE WEIRS

Secondary Clarifiers - The Solution

- 1. CFD Model Various Improvements
- 2. Test Clarifier
- 3. Field Verification
- 4. Modifications to Test Clarifier
- 5. Final Design of Remaining Clarifiers

Maximize Wet Weather Flow

Increase Underflow Concentrations

Improve Solids Removal

Electrical System – Resiliency and Reliability

Electrical System – Existing Conditions

- Original installation in the 1980s
- Two incoming 34.5kV RG&E circuits (same source)
- Oil circuit breakers and air switches located in outdoor overhead structures
- 4 outdoor 7500kVA transformers - 34.5kV service to 4160V
- 5kV MV distribution switchgear located inside metal enclosure
- MV cabling throughout facility to stepdown transformers

Electrical System – Challenges

Equipment >50 Years Old Failures and Cable Faults

Lack of Redundancy from Power Utility

Difficult to Procure Spare Parts for Equipment

Increased Likelihood of Failure and Safety Risk

Electrical System – Existing Conditions

Electrical System – The Solution

Electrical System – The Solution

- 2 New 7500kVA Transformers
- Provisions for Future Standby Power

Lessons Learned and Current Status

Lessons Learned

Benefit of Investing Time in Testing & Phasing

Consistent Coordination & Communication

Continuity Across Program Projects

Equipment Procurement Saves More Than Time & Money

Current Status

Aeration	 Phase A - Complete Phase B - Complete
Clarifiers	 Test Clarifier – Complete 2021 Phase 2 – Ongoing, 2025 Completion
Electrical	 Ongoing – Fall/Winter 2023 Completion

Questions and Acknowledgements

Acknowledgements

- Andy Fraser, PE Engineering Manager, Assistant
- Kevin Quinn Project Manager, MCDES
- Kenneth Kelsey Chief Water Resource Recovery Operator, MCPW
- Wayne C. LaVair Assistant Chief Water Resource Recovery Operator, MCPW

Alan E. Oates

Assistant Chief Waster Resource Recovery Operator, MCPW

Taylor Listowski

Senior Water Resource Recovery Operator, MCPW

Gary B. Brown

Technical Director Monroe County Environmental Lab, MCDES

Pradeep Jangbari

Michele Vincent

The FEV Capital Improvement Program would not have been a success without the contributions of these key contractors:

Schuler-Haas

Electric Corp.

Contact Us

Matthew Czora, PE Program Manager Arcadis Direct: 585.662.4055 matt.czora@arcadis.com

Corky Kelsey, Grade 4A Chief WRRO MCDES

Thank you

Arcadis. Improving quality of life.

9 June 2023

Ŧ