## NYWEA-NEWEA Joint Spring Technical Conference and Exhibition | Saratoga Springs, NY





Design & Performance Evaluation of a Solar-Assisted Dryer with Decentralized Thermal Recovery System

Harvest Technology | Alexander Krämer Engineering 4 Environment | Steffen Ritterbusch, PhD



## **Overview**

- Solar Drying
- Sludge Reformer
- Case Study
- Future Work









## **University Hohenheim**

- 26 diploma thesis
- 3 doctorate thesis
- 7 R&D projects:
  - wastewater sludge
  - renewable energy sources

## University Stuttgart



- 7 diploma thesis
  - wastewater sludge
  - Biomatter waste
- 150 scientific publications

## **Solar Drying**

1.000 PE

10,000 PE

100,000 PE

## **Small Plants**

1,000 - 5,000 t/yr @ 20% DS



Storage Dryer



Batch Electric Mole

**Medium Plants** 

5,000 - 15,000 t/yr @ 20% DS







Waste Heat



















Time vs. % Solids - Brentwood Sludge Trial 1







## Time vs. % Solids - Brentwood Sludge Trial 2



## The Concern with drying Sludge / Biosolids

- It requires lots of energy!
  - 90 130 kWh per ton of water evaporated (depending on temperature level)
  - Thermal Energy Requirement
    - Natural Gas
    - Heating Oil

• Energy is typically derived from the burning of fossil fuels which yields:



## **Energy Consumption – drying Biosolids**

90-130 kWh<sub>el</sub> / ton H<sub>2</sub>O evaporated



3.1 Million BTU/ ton H<sub>2</sub>O evaporated

25 - 35 kWh<sub>el</sub> / t H<sub>2</sub>O evaporated



Thermal Dryers vs Active Solar Dryers



Solar Drying Continuous Operation



Tilling Device: SludgeManager™



## **Solar Drying | Continuous Operation**



Solar Drying
Continuous Operation

## Features & Benefits:

fully automated loading, drying and discharge process

Point-to-point transport of the biosolids

Effortless sludge handling even in the sticky phase

Durable and low-maintenance technology

 Suitable for chamber widths of 30ft to 60ft and drying areas of up to 33,000 ft<sup>2</sup>

 AHC® (Automatic Height Control) automatic height mapping system ensures that the tilling device automatically adjusts to uneven ground and that the filling level of the hall is even



## Solar Drying Continuous Operation

Biosolids <u>loading</u> at 15 - 28 %d.s. fully automated



Biosolids <u>unloading</u> at 75 - 90% d.s. fully automated































## Solar Drying Continuous Operation

"The operational experience with the solar drying facility in New Zealand is very positive and the operator input has been minimal. The Solar Drying Facility is a fully automated system that is robust and reliable and has a low energy requirement of about 206 kWh/t dry solids to dry the dewatered sludge from 18 % dry solids to over 70 % dry solids." – Mr. Rainer Hoffmann STANTEC/MWH Asia Pacific Chief Process Engineer at Christchurch, New Zealand – referring to the -> SludgeManager™



## **THERMO-SYSTEM®** Active Solar Dryer™

- Most plants are located in Germany
- Located North of 49th parallel (US-Canada border)
- High cloud cover
- Cold, wet/snowy winters



Germany/Austria: > 50 plants

World: > 200 plants

# MT7



# EX ®



## >200 ACTIVE SOLAR DRYER™ installations worldwide.

• Ranging from 0.2 MDG to 90 MGD



**Installations USA** 

Average Drying Performance of over 200 Solar Drying Installations



# THERMO-SYSTEM® Active Solar Dryer<sup>™</sup>



# THERMO-SYSTEM® Active Solar Dryer<sup>™</sup>







# THERMO-SYSTEM® Active Solar Dryer™



# THERMO-SYSTEM® Active Solar Dryer<sup>™</sup>



## THERMOSYSTEM® Active Solar Dryer™

## Palma de Mallorca

- 40 MGD Plant
- Different type of sludge
- 33,000 tons per year
- Footprint: 4.4 acres
- 12 Chambers





## REGIONAL DRYING FACILITY

Sludge Loading into the Active Solar Dryers















## Sludge Reformer From Lab-Scale to Piloting



## **Sludge Reformer**











## Air Handling and Bagging System



### Case Study Renningen, Germany



# Case Study Renningen, Germany



#### Renningen Anaerobic Digestion 1.5 MGD

Example Renningen (20 000 PE – approx 1.5MGD)



## **Dewatering to Drying to Ash**



dewatered biosolids at 22% ds

dried biosolids at 80% ds

ash from the Reformer







Comparison of the neutral ammonium citrate solubility (NAC) of ash from the SludeReformer and typical mono-incineration ash

#### **Future Design Option**

#### **Top View**



#### **Side View**















## Thank you!

Alexander Krämer Founder & CEO M: (561) 846-0334

E: akraemer@harvest.llc

Steffen Ritterbusch, PhD Inventor & Consulting Engineer

