Stormwater Biofiltration for Nutrient Control: A Summary of Three Years of Field-based Investigations

Douglas Daley, Associate Professor, P.E. (NY) and Jessica Buhrle, M.S. (2023) Environmental Resources Engineering SUNY College of Environmental Science & Forestry Syracuse, NY

> NYWEA 2023 Spring Meeting June 8, 2023

Summary

- Study Design: Field-scale irrigated column-style mesocosms with replication
- Effects of organic matter (OM) and soil height (HT) on dissolved constituents of concern
 - Zinc: OM and HT were not significant factors
 - Copper: Low OM had significantly better removal. HT was not a significant treatment factor.
 - Phosphorous: Low OM had significantly better removal. HT was not a significant treatment factor.
 - Nitrogen: OM not significant for NO₃ or NH₄
 - HT significantly affects NO₃ removal
 - HT significantly affects NH4 removal
- Vegetation effects: Not significantly different from bare soil

MOTIVATION

- Sponsored by NYSERDA commencing in 2017
- Interest in predicting treatment performance for dissolved constituents of concern
- Modification of the stormwater design manual (SWDM) by the NYS Department of Environmental Conservation (DEC)

NYSERDA

Objectives

- Develop specification for biofiltration media based on particle size distribution
- Determine effect of organic matter (OM) content on aqueous phase constituents of effluent
 - Nitrogen Mix (greater organic matter)
 - Phosphorous Mix (lesser organic matter)
- Determine effect of soil column height (HT)
 - Residence period/contact time
- Determine effect of vegetation on effluent water quality

Biofiltration Soil Medium (BSM) Design (2017-2018)

Target: requires custom blending*

- Washed concrete sand
- Topsoil
- Clay
- Compost

Delivered vs design intent:

- More clay, less VF gravel is desirable
 - Clay controls infiltration
 - Provides adsorption sites
 - Blending clay was a challenge clumping
- Soil texture: well-graded loamy sand (~5% silt/clay)

Particle Size	Design Target	As Delivered
Very Fine Gravel	-	23%
Very Coarse Sand	37%	11%
Coarse Sand	13%	11%
Medium Sand	26%	21%
Fine Sand	19%	21%
Very Fine Sand	5%	8%
Silt	5%	4%
Clay	4%	1%

NYSDEC SWDM (Draft May 2022)

- Ch 6: Table 6.14 Stormwater Filtering Design Specifications
- Filter Media for Infiltration Bioretention (F-4), Filtration Bioretention (F-5)
 - 60-75% of ASTM C-33 Sand
 - 25-40% Topsoil per NYSDOT 713-01 Roadside Mix

Topsoil	USCS	Percent		C-33 Sand	USCS Soil Type	Percent Passing
	Soil Type	Passing		9.5 mm (3/8 in)	Gravel	100
2" (50 mm)	Gravel	100	٢	4.75 mm (No. 4)	Coarse Sand	95-100
1" (25 mm)	Gravel	85-100		2.36 mm	Coarse Sand	80 to 100
¼″ (6.3 mm)	Sand	65-100	${Z}$	1.18 mm	Medium Sand	50 to 85
0.075 mm (No. 200)	Silt	20 - 65		o.6 mm	Medium Sand	25 to 60
0.002 mm (2 um)	Clay	0-20		o.3 mm	Fine Sand	5 to 30
				0.15 mm	Find Sand	0 t0 10

PDH check

- Target spec for BSM is 5% clay
- Topsoil (10% clay) is blended with ASTM C-33 sand at a rate of 40% topsoil (the max) to 60% sand (the minimum).
- Does the blend meet spec?

Topsoil	Sand	Mix
10% clay	o% clay	Target 5%
40 lb	60 lb	100 lb
4 lb clay	o lb/clay	4 lb
		4/100 = 4%
		Miss

Study Design

Design Criteria	
Soil Column Design:	3 x 3 factorial with 3 replicates plus control 3 organic matter (OM) at 1.6%, 4.6%, 6.9% 3 soil depths at 18", 30", 48" 2-foot diameter HDPE culvert pipe
Target Analytes:	NO ₃ NH ₄ (Total N) P Cu Zn
Stormwater:	"Synthesized" to align with 4x national median stormwater concentrations. Focus on dissolved (aqueous) constituents.
# of Irrigation Trials:	6 – 14 per season
Experimental Period:	Summers 2019, 2020, 2021
Sampling:	Influent: 3x / trial Effluent: 3x / trial Samples @ 0.1 pore volume (PV); 1.1 PV and end of drainage
Irrigation Rate:	2"/hr (normal) with periodic stress tests at 6"/hr and 9"/hr
Irrigation Duration:	9 to 12 hours
Vegetation:	Yr 1: Bare Yr 2: Emerging Yr 3:Established

Lessons re. Construction Methods

- Layering effects on soil resistance in Year 1 (2019)
- Hydraulic vibration to consolidate soil in Year 2
 - Reduced infiltration rate from average ~ 18 in/hr (3.1 to 49) to average ~ 1.2 in/hr (0.2 to 3.5)
 - Breakthrough time increased from ~0.2 hours in all columns to ~3.4 hours.
- Individual columns still indicated preferential flow paths, while others exhibited ponding at various times
 - Biological sliming
 - Crust formation

Results

Jessica

Removal Rates Treatment Effects

COPPER

- Average 80% removal regardless of treatment or hydraulic loading (2019 2020).
- No significant difference amongst heights
 - Mean was slightly greater for 18" columns
- Significant difference amongst OMF
 - Greatest Cu removal (x = 82%) with Low OMF (1.6% OMF)

Cu influent and effluent concentrations (ppm) 2020

- Average 98% removal regardless of treatment or hydraulic loading during Years One and Two
- Neither OMF nor HT were significant factors in Zn removal
- High removal rates consistent with other studies

Zn influent and effluent concentrations (ppm) 2020

TOTAL PHOSPHOROUS

- Mean 78% removal across all treatments
- OMF had a significant effect on TP removal
 - Removal effectiveness decreases as OMF increases
- No significant difference amongst heights
- Consistent with prior studies, lower OMF should be used in P-restricted environments

	TP % Re		
	2019	2020	2021
Mean (SD)	82% (19%)	78% (4%)	65% (27%)
Median	90%	77%	74%
Maximum	98%	86%	89%
Minimum	-1%	71%	18%

TP influent and effluent concentrations (ppm) undifferentiated by treatment (2020)

Total Nitrogen (2019)

Mean for all treatments = 12% (s=30%)

• Greatest removal (30%) with Medium OMF and 48" Depth

Average Nitrogen Removal by Treatment (N=72)

AMMONIUM

- Highly variable effluent concentrations across columns
- Median effluent ~ 0.01 mg/L (below detection limit)
- Confounding variables:
 - Soil temperature: denitrification increases with warming temperature
 - Soil moisture: extended antecedent dry periods increase NO₃ export

	NH ₄ Removal			
	2020	2021		
Mean (SD)	-8% (98%)	13% (60%)		
Median	8%	23%		
Maximum	96%	88%		
Minimum	-211%	-81%		

T-NH₄ influent and effluent concentrations (ppm) undifferentiated by treatment (2020)

NITRATE

- 2020: Grass sowed after Trial 2
- Nitrate export likely a result of nitrification, flushing of old pore water during irrigation
 - HYDRUS 1D modeling yielded similar results

	NO ₃ Removal			
	2020	2021		
Mean (SD)	-35% (59%)	-40% (41%)		
Median	-12%	-42%		
MAX	15%	19%		
Min	-193%	-100%		

NO₃ influent and effluent concentrations (ppm) undifferentiated by treatment (2020)

AMMONIUM & NITRATE

AMMONIUM:

- No significant difference amongst OM levels
- Effluent concentration decreases significantly with increasing height (HT)

NITRATE:

- No significant difference amongst OM levels
- 48" height: significantly greater nitrate export
- Significant interaction OMF*HT

PDH Check

I'm in a P-limited watershed. My biofiltration mix should contain:

b) Less than 7% organic matter by weight

Vegetation (Tall Fescue) Effect on Effluent Concentration (2020)

High OM

30″

Vegetated vs Bare

Vegetation did not have significant effect on effluent quality (2020)

Trends:

- TP: Vegetated > Bare
- NO₃: Vegetated < Bare
- NH₄: Vegetated = Bare

Conclusions

- Mix design requires custom blending
- Construction techniques affect hydraulic performance
- Adsorption (clay, OM) main process for P, Cu, Zn
- NO₃ and NH₄ have inverse treatment relationship
 - Nitrification f(residence time, elapsed period, temperature, moisture)
 - Denitrification needed

Performance Design Targets					
	Р	Cu	Zn	NO ₃	T-NH ₄
Height				18" or 30"	48″
ОМ	LOW	LOW			

Zinc

- OM and HT were not significant factors
 - Average removal ~98% (430 ppm to 8 ppm)

Copper

- Low OM had significantly better removal (82%)
- HT was not a significant treatment factor.
 - Average removal ~79% (60 ppm to 11 ppm).

Phosphorous:

- Low OM had significantly better removal (94%)
- HT was not a significant treatment factor.
 - Average 78% 82% removal (1.38 ppm to 0.3 ppm)

Nitrogen:

- OM not significant for NO₃ or NH₄
- HT significantly affects NO₃ removal 48" worst
- HT significantly affects NH4 removal 48" best

Vegetation effects: Not significantly different from bare soil

Acknowledgements:

NYSDEC:

Dave Gasper Ethan Sullivan Ryan Waldron

EFC: Brian Gyory

Project Sponsor: NYSERDA Agreement #103851 Amanda Stevens, Project Manager **ESF Faculty:** Dr. Russell Briggs Dr. Tim Morin Dr. Stephen Stehman Dr. Lianjun Zhang Mr. Timothy Toland

ESF Lab Staff: Deb Driscoll Marlene Braun Chuck Schirmer

ESF Graduate Students: Mr. Geoff Golick Ms. Shaen Guang Ms. Corinne Healey Mr. Michael Fox Mr. Joel Requena

Discussion

Supplemental information

- First Flush (old water vs new water)
 - Residence time between irrigations NH4 transformation, nitrification
- Climate effects
 - Intermittent precipitation
 - Temperature
- Construction methods
- 2020 Vibratory consolidation under saturated conditions
 - Decreased infiltration rate (mean = 1.2 in/hr, range 0.2 3.5 in/hr)
 - Mean soil resistance: 18" (28 psi); 30" (59 psi); 48" (91 psi)
- Ponding
 - Bioslime growth
 - Rooting
 - Unexplained (1B3)

Biofiltration Column Treatments

Synthetic Stormwater

Pollutant of Concern	Source Chemical Compound	Target Concentration (mg/L)
Nitrogen-NO ₃	KNO ₃	2
Nitrogen-NH ₄	$CO(NH_2)_2$	4
Phosphorus	KH_2PO_4	1
Copper	CuSO ₄	0.046
Zinc	ZnCl ₂	0.516

Ksat – Soil Columns

		5/05/20	5/11/20	11/13/20	5/05/20	5/11/20	11/13/20
Treatment (OM + HT)	Soil Depth (cm)	Avg K _{sat} (cm/hr)	Avg K _{sat} (cm/hr)	Avg K _{sat} (cm/hr)	BT(hr)	BT(hr)	BT(hr)
Low + 18		96.4	16.4	20.1	0.4	2.5	2.0
Med + 18	40.64	38.4	14.6	28.8	1.1	2.9	1.5
Hi + 18		204.3	8.8	36.6	0.2	4.6	1.1
Lo +30		137.2	21.8	NA	0.5	3.1	NA
Med + 30	69.54	328.7	15.1	16.1	0.2	4.6	4.3
Hi + 30		433.5	28.0	17.1	0.1	2.5	4.2
CONTROL	71.52		25.4	7.1	NA	2.8	10.2
Lo + 48		352.9	20.1	45.4	0.3	5.7	2.5
Med + 48	113.87	288.7	30.3	119.1	0.4	3.7	0.9
Hi + 48		1470.4	82.0	117.9	0.1	1.4	1.0

Source: Li, J., & Davis, A. P. (2016). A unified look at phosphorus treatment using bioretention. *Water Research*, *90*, 141–155. https://doi.org/10.1016/j.watres.2015.12.015

TOTAL PHOSPHORUS

- PO₄³⁻, high negative charge
- Attracted to Al and Fe hydroxides
- Mono- or bi-dentate adsorption to soil particles

Source: Thompson, A. & Goyne, K. W. (2012) Introduction to the Sorption of Chemical Constituents in Soils. *Nature Education Knowledge* 4(4):7

Aqueous METALS

- CU²⁺
- Zn²⁺
- Adsorb to soil surface by forming inner and/or outer complexes

Grass cover

Sowed	l: 6	/12/	20
-------	------	------	----

% Mixture	Seed Description	Purpose
38.34	BarElite Tall Fescue	Forage, perennial
35.28	BarRobusto Tall Fescue	Landscape with endophyte
14.36	Panterra V Italian Ryegrass	Turf annual
0.933	Baron Kentucky Bluegrass	Lawn annual

6/25/20

