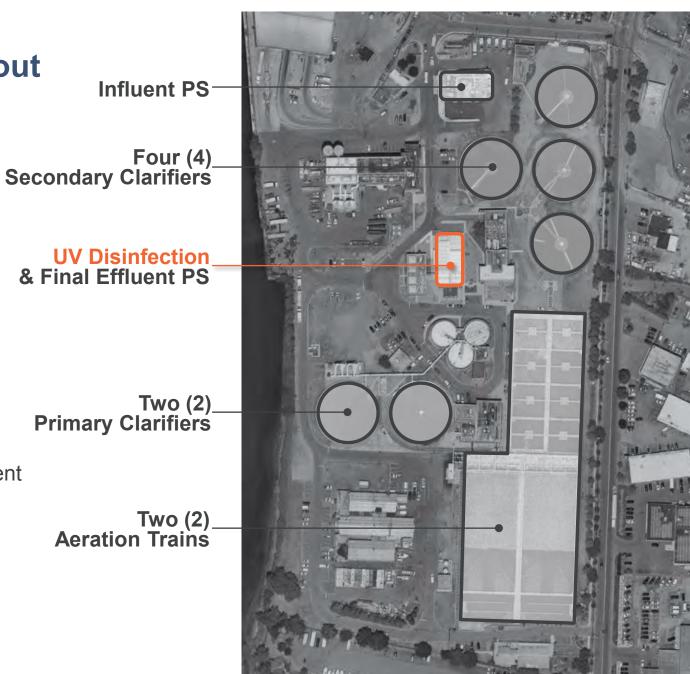

Overcoming the Challenges of a Minimum Continuous UV Dose Requirement for Disinfection of Secondary Effluent

NEWEA & NYWEA 2023 Joint Spring Meeting – June 7, 2023

Agenda


- Stamford WPCF background
- Drivers for UV disinfection system upgrade
- Field and laboratory sampling and testing
 - Field sampling
 - Collimated beam testing
- Design approach and configuration
 - Alternatives analysis and selected alternative
 - Pre-selection of UV disinfection equipment
- Construction sequencing and system commissioning

Stamford WPCF Background

Plant Characteristics and Layout

- Design capacity
 - Annual average flow = 24 mgd
 - Peak wet-weather flow = 68 mgd
- 4-stage Bardenpho process
 - Biological nitrogen removal
- Unit processes
 - 2 primary clarifiers
 - 2 aeration trains
 - 4 secondary clarifiers
- Ultraviolet (UV) disinfection of secondary effluent
- Final effluent pumping

NPDES Permit Limits for Disinfection

Parameter	Sampling Frequency	Sampling Type	Limit	Notes
Bacteriological Li	mits			
Fecal coliform	3 / week	Grab	88 cfu / 100 mL	Monthly geometric mean
Fecal coliform	3 / week	Grab	< 10%	% of samples/month with > 260 cfu / 100 mL
Fecal coliform	3 / week	Grab	2,400 cfu / 100 mL	Maximum
Enterococcus	3 / week	Grab	35 cfu / 100 mL	Monthly geometric mean
Enterococcus	3 / week	Grab	500 cfu / 100 mL	Maximum
UV-Specific Limits	5			
UV Dose	Continuous	N/A	\geq 30 mW-sec / cm ²	Minimum
UV Transmittance	Work day	Grab	N/A (%)	Monitoring only

Drivers for UV Disinfection System Upgrade

Drivers for UV Disinfection System Upgrade

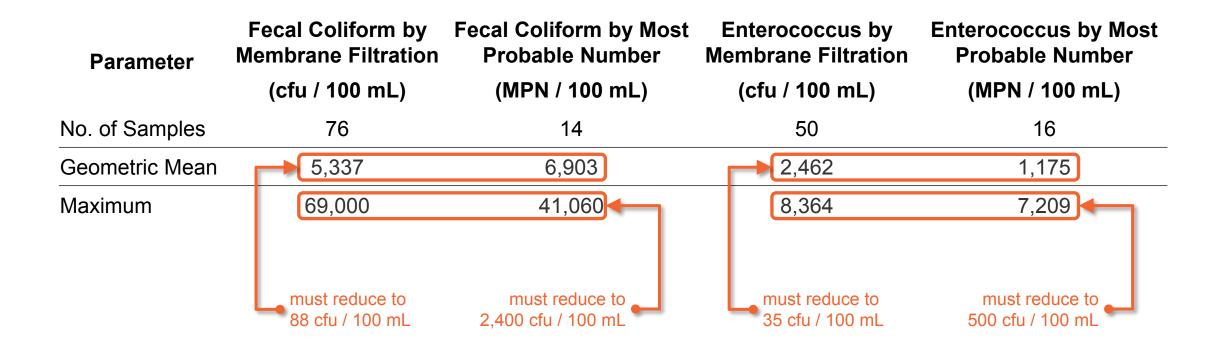
- Existing system did not have redundancy at peak wetweather flow of 68 mgd
 - TR-16 reliability for UV disinfection equipment
 - 8.3.4.6 Reliability

A UV system must be capable of delivering the design dose and disinfecting effluent at peak instantaneous flows with one bank of modules out of service. For systems that require continuous, uninterrupted disinfection, more than one UV reactor (channel) is required.

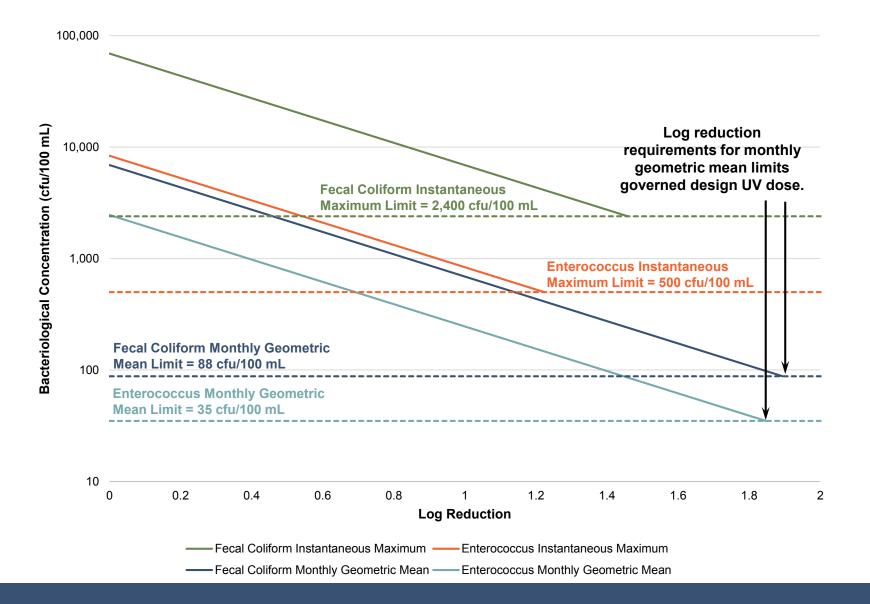
A UV system also requires a backup electrical supply capable of powering the entire system. The electrical supply must be designed to prevent common-mode failure of an electrical component from disabling the entire disinfection system.

 Effectively requires a standby channel, or a standby lamp bank per channel

- Aging equipment
 - Original system installed under early 2000s plant upgrade
 - Occasional lamp shutdowns due to low water levels
 - Algae impacts
- NPDES permit limits
 - Stricter limits for fecal coliform and Enterococcus introduced in 2016



Field and Laboratory Sampling and Testing


Field Sampling

• Pre-UV sampling of fecal coliform and Enterococcus concentrations

- Compare to NPDES permit limits
- Determine log reductions that must be achieved by UV disinfection system

Pre-UV Bacteriological Log Reductions Required

Collimated Beam Testing

Bench-scale laboratory test

- Single lamp and small volume of water
- Develop UV dose-response relationships
- Establish target UV dose

$$UV Dose \left(\frac{mW - sec}{cm^2} or \frac{mJ}{cm^2}\right) = UV Light Intensity \left(\frac{mW}{cm^2}\right) \times Exposure Time(sec)$$

- · Not directly equivalent to theoretical dose of operating UV systems or bioassay doses determined with test organisms
 - Average Intensity x Average Contact Time dose model for full-scale UV system
 - Attenuation factors: quartz sleeve transmittance, lamp aging, lamp fouling
 - Theoretical dose generally much higher than collimated beam dose

Collimated Beam Testing Results


	· · · · ·	· · · · ·
0	12,600	2,180
5	1,740	1,030
10	38	145
15	5	19
20	< 2	5
30	< 2	5
40	< 2	3

UV Dose (mJ/cm²) Fecal Coliform (cfu / 100 mL) Enterococcus (cfu / 100 mL)

- Enterococcus reduction requires higher UV dose
 - 8 mJ/cm² per log reduction —> 19 mJ/cm²
 - Minimum regulatory design dose of 30 mJ/cm²

Design Approach and Configuration

Alternative Channel Configurations

Alternative Channel Configurations

Alternative	Description		o. of Chann	els	Redundant Lamp
No.			Standby	Total	Bank per Channel (Yes/No)
1	Construct two (2) new channels in unused Basin 1; replace existing equipment in two (2) existing channels in Basin 2	3	1	4	No
2	Construct three (3) new channels in unused Basin 1	2	1	3	No
3	Construct three (3) new channels in unused Basin 1	3	0	3	Yes
4	Construct two (2) new channels in unused Basin 1 and one (1) new channel in Basin 2	3	0	3	Yes
5	Construct two (2) new channels in unused Basin 1	2	0	2	Yes
6	Construct one (1) new channel in unused Basin 1 and one (1) new channel in Basin 2	2	0	2	Yes

Lamp Configurations and Manufacturers Considered

Vertical Lamp Systems

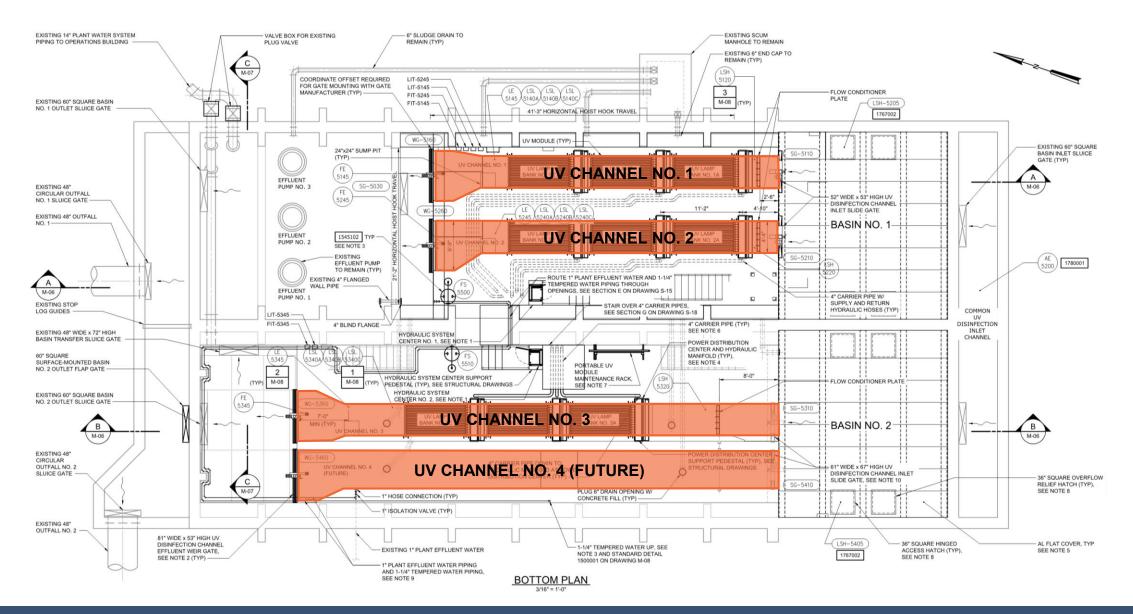
- Ozonia Aquaray 3X
- Trojan UVSigna

Inclined Lamp Systems

Wedeco Duron

Horizontal Lamp Systems

- Trojan UV3000Plus
- Wedeco TAK 55



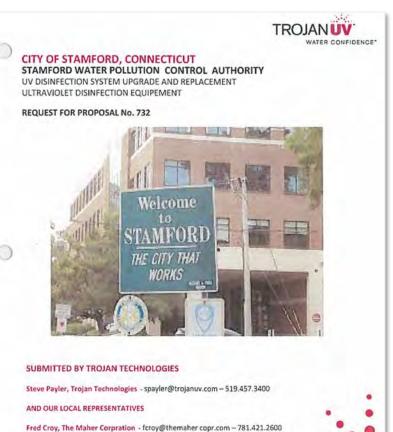
Selected Channel Configuration

Alternative Channel Configuration	Advantages	Disadvantages		
Alternative No. 1	 Standby channel at peak flow Limited modifications to existing UV channels in Basin 2 	 Limited disinfection capacity during construction in Basin 2 Channel operation during winter 		
Alternative No. 2	 Standby channel at peak flow Full disinfection capacity during construction Abandon existing UV channels in Basin 2 	 Insufficient basin width for egress Insufficient channel wall width for weir gate mounting Conflicts between adjacent power distribution centers Infeasible for Wedeco Duron Channel bends at north end 		
Alternative No. 3	 Full disinfection capacity during construction Abandon existing UV channels in Basin 2 	 All channels in service at peak flow Multiple banks in series Limited basin width for egress Limited channel wall width for weir gate mounting Conflicts between adjacent power distribution centers Channel bends at north end 		
Alternative No. 4	 Improved access and working space versus Alternative No. 2 Improved channel hydraulics versus Alternative No. 2 	 Limited disinfection capacity during construction in Basin 2 Multiple banks in series 		
Alternative No. 5	 Full disinfection capacity during construction Abandon existing UV channels in Basin 2 	 All channels in service at peak flow Multiple banks in series Infeasible for Wedeco Duron Wide channel spans 		
Alternative No. 6	Superior layout to Alternative No. 4	 Limited disinfection capacity during construction in Basin 2 All channels in service at peak flow Multiple banks in series Wide channel spans 		

Selected Channel Configuration

Pre-Selection of UV Disinfection Equipment

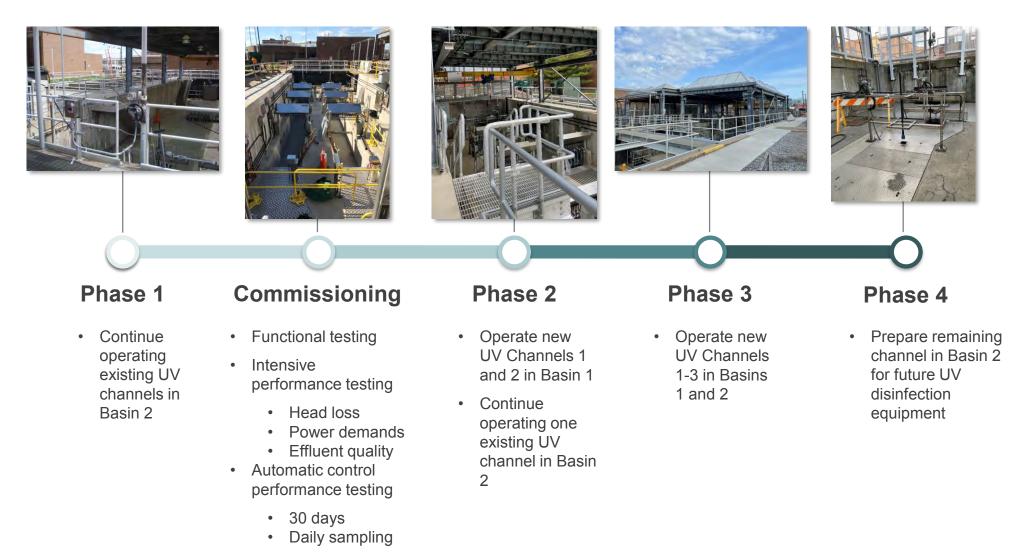
- Request for proposals (RFP) for pre-selection of new UV disinfection system equipment
- Evaluation criteria
 - Equipment features
 - Installed equipment experience
 - Preventive maintenance and service and parts availability
 - Equipment cost
 - O&M life-cycle cost


• Proposals received

- Trojan UV3000Plus
- Wedeco Duron

MAYOR AVID R. MARTIN		PURCHASING AGENT ERIK J. LARSON Phone: (20) 977-407 FAX: (20) 977-323 Emel: <u>slarsonBatemfordct.cor</u>
	CITY OF STAMFO OFFICE OF ADMINISTRATIN 858 WASHINGTON BOULEVAR STANFORD, CT 06901-2152	DN .
REQUE	ST FOR PROPOS	ALS No. 732
ULTRA-VI	OLET DISINFEC FOR	TION SYSTEM
STAMFORD WAT	ER POLLUTION C	ONTROL AUTHORITY
PROPOSALS DUE:		FEBRUARY 7, 2018 @ 4:00 P.M.
SUBMIT TO:		CITY OF STAMFORD 888 WASHINGTON BOULEVARD STAMFORD, CT 06904-2152
ATTENTION:		ERIK J. LARSON AT (203) 977-4107 OR tarson@stamfordct.gov
RFP BOND:		5%
	÷1	NUMBER OF COPIES REQUIRED: DNE ORIGINAL AND TWELVE (12) COPIES, ALONG WITH TWO (2) LECTRONIC VERSIONS (USB DRIVE)
DIRECTLY FROM COUNTY REPI	RODUCTIONS, INC., LOCAT	AND DOCUMENTS CAN BE PICKED UP D AT 39 BELDEN STREET, STAMFORD, FEE WILL BE CHARGED FOR THESE
Date Issued: 1/9/2018 (REV: 09-01-17)		
		1917 B. 11" a

Pre-Selected UV Disinfection Equipment

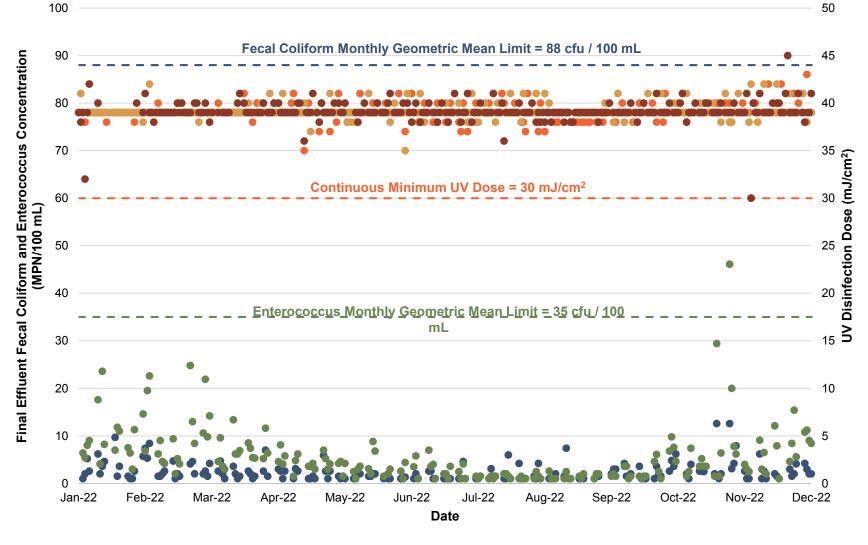

Design Parameter/Characteristic	Value
Lamp Orientation	Horizontal
Water Depth at Upstream Lamp Bank (in)	35.16
Input Power per Lamp (W)	240
Lifting Device	External bridge crane
Wiper Drive Type	Hydraulic
Lamp Sleeve Cleaning	Mechanical & chemical
Number of Channels	3
UV Lamp Banks per Channel	3 (2 Duty, 1 Standby)
Total No. of UV Lamps	936
Total Power (kW)	236
Guaranteed Power at 24 mgd and 67% UVT (kW)	46
UV Dose at Design Conditions (mJ/cm ²)	36.9
Head loss at Peak Flow (in)	4.48
Minimum Weir Length per UV Channel (in)	81.00

PROPOSAL DUE: FEBRUARY 7, 2018, @ 4:00 P.M.

Construction Sequencing and System Commissioning

Construction Sequencing

Phase 1 Commissioning


UV Channel Flow Measurement

Directly measure flow over UV channel effluent weir gates

Compare channel water depth to effluent weir gate position

UV Disinfection Performance

• Final Effluent Fecal Coliform • Final Effluent Enterococcus • Channel 1 Low Dose • Channel 2 Low Dose • Channel 3 Low Dose

Questions?

Matthew Hross, PE, CCCA

mhross@hazenandsawyer.com

