June 7, 2023

GHG 101

Measuring and Mitigating Climate Impacts from Wastewater Operations

Bill Brower 585.532.9996 BBrower@BrwnCald.com

Janine Burke-Wells 603.323.7654

janine@nebiosolids.org

Overview

- 1. Greenhouse gas accounting basic concepts
- 2. Sources (emissions) at WRRFs
- 3. Sinks (offsets) at WRRFs
- 4. GHG accounting tools BEAM

Climate impacts on wastewater utilities

- Water scarcity
- Flooding of treatment plants
 - Hurricane Sandy, King County
- Increased stormwater flows, CSOs
- Power grid instability
- Unfavorable conditions for land application
- Uncertainty

Flooding at West Point WRRF in Seattle (image from Seattle Times)

Why develop a GHG inventory?

- Highlights areas where the biggest improvements can be made
- What gets measured gets acted on
- High emissions can indicate opportunities to improve energy & processing efficiency
- Immediate payback
- Carbon credits?

Example of a GHG Inventory for a Large WRRF

(Metric Tons CO2e)

Greenhouse Gas Potency

		GWP values for 100-year time horizon			
Industrial designation or common name	Chemical formula	Second Assessment Report (SAR)	Fourth Assessment Report (AR4)	Fifth Assessment Report (AR5)	
Carbon dioxide	CO ₂	1	1	1	
Methane	CH4	21	25	28	
Nitrous oxide	N ₂ O	310	298	265	
Substances control	olled by the Montreal P	Protocol			
CFC-11	CCI3F	3,800	4,750	4,660	
CFC-12	CCI ₂ F ₂	8,100	10,900	10,200	
CFC-13	CCIF3		14,400	13,900	
CFC-113	CCI2FCCIF2	4,800	6,130	5,820	
CFC-114	CCIF2CCIF2		10,000	8,590	
CFC-115	CCIF ₂ CF ₃		7,370	7,670	
Halon-1301	CBrEs	5 400	7 140	6 290	

Source: ghgprotocol.org

Standard Unit: metric-tons of carbon dioxide-equivalent

1 MTCO2e

+2,500 miles driven

+120,000 smartphones charged

+1-a fore

+1-acre of U.S. forests

Source: EPA GHG Equivalency Calculator

When are GHGs directly produced at WRRFs?

Organic matter (carbon) breaking down in aerobic or anaerobic conditions

Nitrogen conversion

Sources: purdue.edu; Campos, et al., 2016

Biogenic Sources are Considered Net Zero...

Biogenic Sources are Considered Net Zero... Unless

e.g. biogas leakage

Typical Scope 1 Process Emissions for a WRRF

• F: N_2^{-0} from clarifiers

Non-process Scope 1 Emissions for a Utility

- Natural gas on-site usage
- Vehicle fuel usage
- Refrigerants

Typical Scope 2 Emissions for a WRRF

Energy produced by others:

- Electricity
- Heating/cooling
- Steam

Typical Scope 3 Emissions for a WRRF

- Solids hauling
- Chemical production
- Chemical hauling

Biggest Opportunities to Improve Climate Impact

- Energy efficiency
- Improve biogas capture and utilization
- Co-digestion
- More climate-friendly biosolids management

GHG Inventory Tools

- GIZ/WaCCliM <u>Energy Performance and Carbon Emissions</u> <u>Assessment and Monitoring</u> (ECAM)
- OWWA/WEAO Climate Change Committee GHG Inventory
 <u>Tool</u>
- Ontario Water Consortium
- <u>COMET</u> (organics land application)
- Custom-made models
- <u>BEAM</u>

WRF project: "Establishing Industry-Wide Guidance for Water Utility Life Cycle Greenhouse Gas

Biosolids Emissions Assessment Model (BEAM)

What is the Biosolids Emissions Assessment Model (BEAM)?

- Excel spreadsheet
- Calculates net GHG emissions and sinks for different biosolids treatment and end use options
 - ► Does not address all WRRF, utility emissions just for solids
- ▶ Estimates Scopes 1, 2, 3 & biogenic CO₂ emissions
- Uses detailed emissions factors from published literature
 - As specific as possible to different biosolids materials
- Original published in 2010, 2011, from project by Canadian Council for Ministers of the Environment (CCME).

Original BEAM purpose

- estimate a program's GHG emissions, including establishing a baseline
- compare different biosolids management scenarios
- estimate impacts from changes in biosolids management
- understand the factors that have the greatest impact on GHG emissions

Example Graph: Emissions by Process

16,000

Emissions Factors

Most comprehensive resource for biosolids-specific emissions/sinks factors

Wastewater Treatment Factors				
Typical TSS in sludge after primary sedimentation (kg/1000 m³)	150	Metcalf & Eddy	, 2003, p. 1456	
Expected solids concentration of combination primary/WAS unthickened sludge (%)	1.0%	Metcalf & Eddy	, 2003, p. 1492	
Expected solids concentration in sludge from gravity thickener, primary and WAS (%)	4%	Metcalf & Eddy	, 2003, p. 1457	
Typical Biosolids Characteristics (De-watered cake)	unprocessed	digested	limed	
Total nitrogen (%-dry weight)	4.0%	5.0%	3.2%	Northern Tilt
Total phosphorus (%-dry weight)	1.5%	1.9%	1.2%	suggested values if dat
TVS(%-dry weight)	78.0%	65.0%	52.0%	not available
Storage and Lagoons		The 95% confid	ence interval rar	nge for this de
Default methane generation from anaerobic shallow lagoon - less than 2 m (kg CH ₄ /kg BOD)	0.12	IPCC, 2006. Vo	lume 5 assumir	ng Bo of 0.6
Default methane generation from anaerobic deep lagoon - more than 2 m (kg CH_4 /kg BOD)	0.40	IPCC, 2006. Vo	lume 5 assumir	ng Bo of 0.6 a
Typical amount of BOD removed to sludge during wastewater treatment	90%	NACWA 2008		
Energy required for low-speed aerators in sludge aerated lagoons after primary sedimentation (kW/1000 m ³ sludge)	5.6	Metcalf & Eddy	, 2003, p. 846 =	0.004xTSS
Average days per year above 15°C	41.7%	41.7% for NYC		
SSO Processing				
liters of diesel/Mg-wet SSO processed	2.38	WM CORe data	a - October 2018	}
kWh/Mg-wet of SSO processed	17.6	WM CORe data	a - October 2018	}
ka propage/Ma-wet of SSO processed	0.05	WM CORe data	- October 2018	2

Keeping BEAM Up-to-date

- Adding new processes, technologies
- Feedback requested from users via website
- Annual reviews
 - BEAM Team
 - Science Review Team (SRT)

High Priority Topics for SRT Review

- ► Landfill methane emissions
- Carbon sequestration of land applied biosolids
- $> N_2O$ from combustion & land app
- Fugitive CH₄ from biogas combustion (engines, flares)
- AD process details (%VSR, SRT)
- Electric & heat efficiency from internal combustion engines
- Fertilizer offsets

Examples of using BEAM

Chicago: Comparing Management Options

Brown & Tian; 2010. <u>https://mwrd.org/sites/default/files/documents/M&RSeminar_07-30-2010-Seminar-</u> Brown Tian MWRD CO2.pdf

Québec: Baseline & comparing alternatives

Table 1. Summary of emissions for the current scenario

Agricultural valorisation (65%)	tCO ₂ e	Composting (35%)	tCO ₂ e	
	1-Process	s direct emissions		
Transportation	80	Transportation	41	-
Machinery	31	Machinery	88	
CH ₄ emissions	67	CH ₄ emissions	221	
N ₂ O emissions	47	N ₂ O emissions	360	
Sequestration	-599	Sequestration	-287	F
2- In	direct emiss	ions linked to energy use		tł
Electricity consumption	0	Electricity concumption	5	
	3- Other i	ndirect emissions		Т
N replacement	-393	N replacement	-193	
P replacement	-81	P replacement	-42	
Total (1 + 2)	54			
Total (1 + 2 + 3)	-655			

Figure 2. Comparison of annual emissions for five different scenarios of biosolids management for the city of Saguenay.

Saguenay, Villaneuve & Dessurealt; 2011: <u>https://www.environnement.gouv.qc.ca/matieres/articles/Municipal-biosolids.pdf</u>

Eugene & Springfield, OR: Part of modeling full plant inventory

Figure 6: Comparison of the MWMC Facilities' Anthropogenic Emissions for 2014

Eugene & Springfield, OR: https://www.eugene-or.gov/DocumentCenter/View/30521/2015-MWMC-GHG-Inventory?bidId

Download & engage via website

- biosolidsghgs.org
- ► Space for sharing:
 - ► results
 - ► tips
 - uses of data
- Spreadsheet and supporting documents available for download
- Sliding scale recommended donation to support annual reviews, website hosting

Maximizing climat	te benefits from	
	Featuring BEAM*2022	
	- a propert of Figure 1 and Hay Immong	
with support from:		
San Francisco Water Sev		
About		
lan Antoniko porvisan Vykormation, data, anti a zakonapor – JEAN/*3022 - to ha original ilizartati Davleniona. Antonaport Nobel (IEAN) eva partitira aminatat, anti vita ingazi itaa multipa superta A zakeholarat, MEDAA	r help bolocist i management programs induce theil greentraulangis (TH-C) instances (purport Sogreet). day tee Canadian Zoomsi or Minkam of the Environment (CDME) in 2000/2010. Autoing on shat, were (SME) were Bosolan present (NEAH-2002 and supporting Minimators	

Additional Resource Links

- <u>How are WRRFs inventorying greenhouse gas emissions?</u> By: Christine Polo, Tracy Chouinard, Sarah Deslauriers, Bill Brower and Manon Fisher
- Greenhouse Gas Sources and Sinks for Water Resource Recovery Facilities By: Bill Brower, Mark Lang, John Willis

Want to get involved?

- WEF RBC Greenhouse Gas Focus Group
 - Contact Maile Lono-Batura <u>MLono-batura@wef.org</u>
- NEBRA Carbon Trading Committee
 - Contact Janine Burke-Wells janine@nebiosolids.org
- IWA Climate Smart utilities Community of Practice
 - More info: <u>https://climatesmartwater.org/</u> (must be IWA member)

Thank you. Questions?

