

PFAS Testing Methods / Guidance

PFAS Sampling Procedures and Analytical Methods 2023 Specialty Conference & Workshop Series Narragansett Bay Commission Providence, Rhode Island 5/3/2023

Jim Occhialini Alpha Analytical A Pace Analytical Services Laboratory

Topics for Discussion

- Focus
 - Current Status of the Most Commonly Used PFAS Analytical Methods in Comparison to Draft EPA Method 1633
- Regulatory criteria and analytical methods
- Finalized EPA methods
- Laboratory modified "user defined" methods
- Draft Method 1633, compare and contrast

What are the Health Advisory Levels?

- Interim updated Health Advisory for PFOA = 0.004 parts per trillion (ppt)
- Interim updated Health Advisory for PFOS = 0.02 ppt
- Final Health Advisory for GenX chemicals = 10 ppt
- Final Health Advisory for PFBS = 2,000 ppt

prior HAL was 70 ppt combined PFOA & PFOS

2

UCMR 5 Reporting Limits

Chemical	Minimum Reporting Level (ppt)	Lifetime Health Advisory Level (ppt)
PFOA	4	0.004 (Interim)
PFOS	4	0.02 (Interim)
GenX Chemicals	5	10 (Final)
PFBS	3	2,000 (Final)

PFOA – implementable in commercial laboratories to the point where analysis to these levels would be widely available using existing instrumentation, at a reasonable cost with a high level of certainty??

Compound	Proposed MCLG	Proposed MCL (enforceable levels)	
PFOA	0 ppt*	4.0 ppt*	
PFOS	0 ppt*	4.0 ppt*	
PFNA			
PFHxS	1.0 (unitless)	1.0 (unitless)	
PFBS	Hazard Index	Hazard Index	
HFPO-DA (commonly referred to as GenX Chemicals)			

The Hazard Index is a tool used to evaluate potential health risks from exposure to chemical mixtures.

Compound	Proposed HBWC (ppt)
PFHxS	9.0
PFNA	10
PFBS	2000
HFPO-DA (commonly referred to as GenX Chemicals)	10

Implications for sources discharging to surface / groundwater used for drinking water?

If the running annual average HI greater than 1.0, it is a violation of the proposed HI MCL

Hazard Index Value

https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas

EPA Takes Important Step to Advance PFAS Strategic Roadmap, Requests Public Input and Data to Inform Potential Future Regulations under CERCLA

April 13, 2023

Contact Information EPA Press Office (<u>press@epa.gov</u>)

EPA is proposing to an additional 7 PFAS to the CERCLA HSL beyond PFOA & PFOS

WASHINGTON — Today, the U.S. Environmental Protection Agency (EPA) is issuing an Advance Notice of Proposed Rulemaking (ANPRM) asking the public for input regarding potential future hazardous substance designations of per- and polyfluoroalkyl substances (PFAS) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), also known as "Superfund."

IMPLICATIONS beyond CERCLA?

PFAS additions to standard site characterization, disposal & state regulatory lists? Site "re-openers" ? Bans / limits on biosolids land application? 4

NJDEP SPLP PFAS Study

Intention to use SPLP to calculate site specific Site Remediation Standards – Migration to Groundwater (SRS-MGW)

- Biases resulting from SPLP apparatus and/or procedure itself?
 - NJDEP study
 - PFOA, PFNA, PFOS & GenX
 - Spiked at 5 different concentrations
 - SPLP & lab user defined PFAS analysis
- Leachate % R averaged in the 90% range
 Follow up MeOH rinse step little carry over
- Conclusion reached that %Rs indicate no need to modify SPLP method

5

Did not review soil leaching

PFAS Method Update: Existing Finalized EPA PFAS Methods

- Method 537, 2009, 14 cmpds, UCMR3
 - UPDATED Method 537.1, 2018, 18 cmpds
 - Drinking water samples
- Method 533, 2019, 25 compounds
 - Drinking water samples
- Method 8327, 2021 24 compounds
 - Aqueous samples

Method 537

 Method 537. Version 1.1 Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) Sept, 2009

- Sample preparation
 - Solid phase extraction (SPE)

- Analytical Instrumentation
 - Liquid chromatography / tandem mass spectrometry (LC/MS/MS)

Method Development for Unregulated Contaminants in Drinking Water: Public Meeting and Webinar

Held June 6, 2018 USEPA, Office of Ground Water and Drinking Water

M537 Approach

EPA Method 537 - List of 14 Compounds

Perfluorooctanoic acid (PFOA) Perfluorooctane Sulfonate (PFOS) Perfluorobutanesulfonic acid (PFBS) Perfluoroheptanoic acid (PFHpA) Perfluorohexane Sulfonate (PFHxS) Perfluorononanoic acid (PFNA) Perfluorohexanoic acid (PFHxA) Perfluorodecanoic acid (PFDA) Perfluoroundecanoic acid (PFUdA) N-methyl perfluorooctanesulfonamidoacetic acid (MeFOSAA) Perfluorododecanoic acid (PFDoA) N-ethyl perfluorooctanesulfonamidoacetic acid (EtFOSAA) Perfluorotridecanoic acid (PRTrDA) Perfluorotetradecanoic acid (PFTeDA)

UCMR 3 PFAS Compounds

9

Method Development for Unregulated Contaminants in Drinking Water: Public Meeting and Webinar

Held June 6, 2018 USEPA, Office of Ground Water and Drinking Water

EPA initially intended on adding 7 PFAS compounds to Method 537.

The revised Method 537.1 only included these 4 for a total of 18 PFAS compounds.

Update to Method 537 (in progress)

Potential PFAS additions	Acronym	CAS#
Perfluoro-2-propoxypropanoic acid	GenX	13252-13-6
Nonafluoro-3,6-dioxaheptanoic acid	NFDHA	151772-58-6
Perfluoro (2-ethoxyethane) sulfonic acid	PFEESA	113507-82-7
Perfluoro-4-methoxybutanoic acid	PFMBA	863090-89-5
Potassium 11-chloroeicosafluoro-3-oxaundecane-1- sulfonate	11CI-PF3OUdS	83329-89-9
Potassium 9-chlorohexadecafluoro-3-oxanone-1-sulfonate	9CI-PF3ONS	73606-19-6
Sodium dodecafluoro-3H-4,8-dioxanonate	ADONA	958445-44-8

<u>Challenge:</u> Obtain performance data, write method, conduct multi-lab verification and peer review method ASAP

EPA Method 533

Inited States

Agency

Environmental Protection

METHOD 533: DETERMINATION OF PER- AND POLYFLUOROALKYL SUBSTANCES IN DRINKING WATER BY ISOTOPE DILUTION ANION EXCHANGE SOLID PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY

Method 533 Procedural Differences from Method 537.1

- Uses extracted internal standard (EIS) isotope dilution approach
 - Isotopically labelled form of the analyte
 - Carbon -13, (¹³C) & deuterium, (²H) EIS
 - Chemically identical analytical performance
 - Spiked prior to all sample prep & extraction / carried through the entire analysis
 - Part of calibration, used for analyte quantification
 - Matrix recovery correction
 - Analyte-specific concentration normalization

Other Significant Method 533 Procedural Difference from Method 537.1

- Solid Phase Extraction (SPE)
 - Uses WAX SPE cartridge
 - Weak anion exchange
 - Versus SDVB for Method 537.1
 - Styrene divinylbenzene

Update to Method 537	(in progre	ss)
Potential PFAS additions	Acronym	CAS#
Perfluoro-2-propoxypropanoic acid	GenX	13252-13-6
Nonafluoro-3,6-dioxaheptanoic acid	NFDHA	151772-58-6
Perfluoro (2-ethoxyethane) sulfonic acid	PFEESA	113507-82-7
Perfluoro-4-methoxybutanoic acid	PFMBA	863090-89-5
Potassium 11-chloroeicosafluoro-3-oxaundecane-1-	11CI-PF3OUdS	83329-89-9
Potassium 9-chlorohexadecafluoro-3-oxanone-1-sulfonate	9CI-PF3ONS	73606-19-6
Sodium dodecafluoro-3H-4,8-dioxanonate	ADONA	958445-44-8

- Uses ammonium acetate rather than Trizma[®] as a preservative
- Uses 28 day holding time to extraction
 - Versus 14 day holding time for Method 537.1

Analyte	Abbreviation	CASRN	Method 533	Method 537.1
11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid	11CI-PF3OUdS	763051-92-9	х	Х
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acd	9CI-PF3ONS	756426-58-1	X	X
4,8-Dioxa-3H-perfluorononanoic acid	ADONA	919005-14-4	x	x
Hexafluoropropylene oxide dimer acid	HFPO-DA	13252-13-6	X	x
Perfluorobutanesulfonic acid	PFBS	375-73-5	x	x
Perfluorodecanoic acid	PFDA	335-76-2	X	x
Perfluorododecanoic acid	PFDoA	307-55-1	x	х
Perfluoroheptanoic acid	PFHpA	375-85-9	X	x
Perfluorohexanoic acid	PFHxA	307-24-4	x	х
Perfluorohexanesulfonic acid	PFHxS	355-46-4	x	x
Perfluorononanoic acid	PFNA	375-95-1	x	х
Perfluorooctanoic acid	PFOA	335-67-1	x	x
Perfluorooctanesulfonic acid	PFOS	1763-23-1	x	x
Perfluoroundecanoic acid	PFUnA	2058-94-8	x	x
1H,1H, 2H, 2H-Perfluorohexane sulfonic acid	4:2FTS	757124-72-4	Х	
1H,1H, 2H, 2H-Perfluorooctane sulfonic acid	6:2FTS	27619-97-2	X	
1H,1H, 2H, 2H-Perfluorodecane sulfonic acid	8:2FTS	39108-34-4	Х	
Nonafluoro-3,6-dioxaheptanoic acid	NFDHA	151772-58-6	X	
Perfluorobutanoic acid	PFBA	375-22-4	X	
Perfluoro(2-ethoxyethane)sulfonic acid	PFEESA	113507-82-7	Х	
Perfluoroheptanesulfonic acid	PFHpS	375-92-8	Х	
Perfluoro-4-methoxybutanoic acid	PFMBA	863090-89-5	X	
Perfluoro-3-methoxypropanoic acid	PFMPA	377-73-1	Х	
Perfluoropentanoic acid	PFPeA	2706-90-3	Х	
Perfluoropentanesulfonic acid	PFPeS	2706-91-4	х	
N-ethyl perfluorooctanesulfonamidoacetic acid	NEtFOSAA	2991-50-6		х
N-methyl perfluorooctanesulfonamidoacetic acid	NMeFOSAA	2355-31-9		х
Perfluorotetradecanoic acid	PFTA	376-06-7		x
Perfluorotridecanoic acid	PFTrDA	72629-94-8		Х

Method 533 shifts focus to shorter chain PFAS

Short Cha	Short Chain PFCAs				Long Chain PFCAs			
C4 PFBA	C5 PFHeA	C6 PFHxA	C7 PFHpA		C8 PFOA	C9 PFNA	C10 PFDA	C11 PFUnA
Short Cha	ain PFSAs		Long Cha	in PFSAs				
C4 PFBS	C5 PFPeS		C6 PFHxS	C7 PFHpS	C8 PFOS	C9 PFNS	C10 PFDS	C11 PFUnS

Method 533: 25 compounds* Method 537.1: 18 compounds

* 25 compound Method 533 list does not include all 18 537.1 compounds

If the 4 cmpds dropped from 533: PFTrDA, PFTA, NMeFOSAA & NEtFOSAA are run by Method 537.1 = 29 compounds combined both methods

DW Methods, UCMR 5

EPA Method 8327 w/ Method 3512 Sample Introduction

SW-846 Test Method 8327: Per-and Polyfluoroalkyl Substances (PFAS) by Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)

- Not a DW method, amenable to non-potable water
- Does not use SPE sample preparation
- Method was not well received

Laboratory User Defined Methods

- For a long time, EPA finalized methods only existed for aqueous samples - What if you needed to analyze other sample media? Or additional compounds
- Laboratory-specific methodology: User Defined Methods
 - Labs developed their own modifications
 - Performance & comparability?
 - Target compound lists, RLs?

Analytical Concerns with Non-Drinking Water Matrices Aqueous Matrices w/Particulates

Particulates will impact SPE performance

- Wastewater, "silty" ground water, etc.

- How are they addressed ? Need a specific SOP
 - Additional sample prep required
 - Filtering??
 - Centrifuging?
 - How are the solids accounted for?
- Isotope dilution approach

Samples pre-spiked with extraction internal standards

17

Soils...Biosolids / Residuals

- Challenging...
- Treat as an AQ or solid sample?
- Samples pre-spiked with extraction internal standards
 - Homogenize
 - Serial extraction
 - Extract clean up
 - Extract concentration

Plant tissue

Fish

3 New EPA SW-846 Methods Proposed

- (1) Non-potable water: SW-846 Method 8327 draft, fall 2018
 - LC/MS/MS direct injection, external standard calibration
 - 24 analytes
- (2) Non-potable water: SW-846 Method 8328
 - LC/MS/MS SPE , isotope dilution
 - 24 analytes
- (3) Solids: SW-846 Method 8329 TBD

early 2018 vintage slide

late 2018 vintage slide

Additional EPA Methods?

- SW-846 Method 8328 Target date??
 - -Non-potable water plus soils, sediments & biosolids
 - LC/MS/MS SPE, isotope dilution
 - 24 analytes plus HFPO-DA
 - Consistent with DoD QSM 5.1, Table B-15
- EPA 1600 series method?
 - EPA working with DoD
- 40 compounds?

- DRAFT methods are single lab validated
- FINAL Methods are multi-lab validated
- 3'rd revision of draft method, multi-lab validation study ongoing

- First EPA Method for solid matrices but...
 - Not multi-lab validated, not finalized yet
 - Certification, regulatory acceptance, uncertainty

Target Compound Lists

Target Analyte Name

Abbreviation

CAS Number

EPA

EPA

EPA

Alpha

22

draft EPA

Items of Interest // Comparative Review AQ Sample Processing

• Draft Method 1633 rev2

- Standard procedure applicable to samples with up to 50 mg suspended solids
 - No filtering
 - Prepare entire sample
 - Homogenize invert 3-4 times
 - Spike w/ EIS
- Rev 3 mentions centrifugation
- Appendices A & B
 - Screening & sub sampling

User Defined Methods*

- Not a clear delineation, based on SPE performance
 - No filtering
 - Prepare entire sample
 - Spike w/ EIS
 - Where indicated centrifugation
 - Resulting AQ and solid fractions
 - » Each extracted? Extract combined?

Overview & Summary- *draft* Method 1633 Sample Extraction

Aqueous samples

- spiked with isotopically labeled standards, extracted using weak anion exchange (WAX) SPE cartridges with clean up using loose graphitized carbon black (GCB) before analysis.
- 500 mL Aq sample volume \checkmark

Soil samples

- 7.1.17 Carbon EnviCarb® 1-M-USP or equivalent, verified by lot number before use, store at room temperature. Loose carbon allows for better adsorption of interferent organics.
- *Note:* The single-laboratory validation laboratory achieved better performance with loose carbon than carbon cartridges. Loose carbon will be used for the multi-laboratory validation to set statistically based method criteria. Once the method is multi-laboratory validated, laboratories will have the flexibility to use carbon cartridges, as long as all method QC criteria are met.

24

- Spiked w/isotopically labeled standards, sequentially extracted 3 times with slightly basic methanol
 - 60 minutes total, first 2 extractions using shaker table
 - GCB & WAX SPE clean up
- % solids determination prior to extraction \checkmark
 - Impact on TAT?

Overview & Summary- *draft* Method 1633 Sample Extraction

26

• Tissue samples

- Spiked with isotopically labeled standards
 - Loose GCB added & sequentially extracted 3 times
 - Slightly basic methanol, 16 hours on shaker table \checkmark
 - 10 mLs acetonitrile, 30 minutes on shaker table
 - 5 mLs slightly basic methanol (0.05M KOH/MeOH)
- Evaporation step (minimal to lessen extract MeOH / water ratio)
- WAX SPE clean up

Overview & Summary- *draft* Method 1633 *rev2* Instrumental Analysis – Linear & Branched Isomers

<u>QUANTITATIVE STANDARDS</u> containing a mixture of branched and linear isomers must be used if they are commercially available. Currently, these include PFOS, PFHxS, NMeFOSAA, and NEtFOSAA.

QUALITATIVE STANDARDS that contain mixtures of the branched and linear isomers of the method analytes and that are used for comparison against suspected branched isomer peaks in field samples. PFOA qualitative standard previously available

 Draft Method 1633 adds qualitative branched isomer standards for 6 additional PFAS (note: linear/branched not reported separately) PFNA, PFOSA, NMeFOSA, NEtFOSA, NEtFOSE, and NMeFOSE 11 / 40 PFAS can be reported as the total of Linear & Branched

Overview & Summary- *draft* Method 1633 *rev2* Instrumental Analysis - Bile Salt Interference Check

- Bile salt interference check(s) added to Draft Method 1633
 - Potential PFOS interferent in tissue samples primarily

FOS		
ample: BILE Check	S/N:7898.0	Points Across peak:142
3.3e6 -		h 200
1266		
3.1eE-		
30e6-		
2.9e6		
2.8e6-		
2.7#6-		
2 fe6 -		
2.5e6-		
2.4e6 -		
2.344-		
2.246		
2.00		
154		
1.546		
1.546-		
1.545 -		
1.545-		
1.4efi-		
1.3e6-		
1.2x6-		
1.1ef		
1.0+6		
B Ged -		
8.0x5-		
7.0e5		
6.0e5-		
5.0x8-		
4.5x6-		
2045-		
2.0e1-		
1 Get -		
0.0x0 1 0.5 10	15 20 25	30 25 40 45 50 55 60 65 70 75 80 85 80

taurodeoxycholic acid (TDCA) Acetonitrile mobile phase

10.2.2.5 When establishing the chromatographic conditions, it is important to consider the potential interference of bile salts during analyses of tissue samples. Inject the bile salt interference check standard containing TDCA (see Section 7.5 if the mobile phase is not acetonitrile) during the retention time calibration process and adjust the conditions to ensure that TDCA (or TCDCA and TUDCA) does not coelute with any of the target analytes, EIS, or NIS standards. Analytical conditions must be set to allow a separation of at least 1 minute between the bile salts and the retention time window of PFOS

Must also include if acetonitrile is not the mobile phase and tissues are being analyzed taurochenodeoxycholic acid (TCDCA) tauroursodeoxycholic acid (TUDCA)

Holding Time Comparison

Sample Media	537.1	537.1	533	533	8327	8327	1633 rev2 draft	1633 rev2 draft
	sample	extract	sample	extract	sample	extract	sample	extract
drinking water	14 days	28 days	28 days	28 days	Х	Х	Х	Х
aqueous	×	х	×	х	14 days*	30 days*	0-6C 28 days** <= -20C 90 days DARK	DARK 0-4C 90 days *****
soils, sediments	x	Х	х	Х	x	Х	0-6C 90 days*** <= - 20C 90 days***DARK	DARK 0-4C 90 days ****
biosolids	х	х	х	х	х	х	0-6C 90 days**** <= - 20C 90days ****DARK	DARK 0-4C 90 days *****
tissue	Х	Х	Х	Х	Х	Х	Once received by the laboratory, the samples must be maintained protected from light at ≤ -20 °C until prepared. Store unused samples in HDPE containers or wrapped in aluminum foil at ≤ -20 °C.	0-4C 90 days ***** maintained protected from the light

* Formal holding times have not yet been established for these

** With the caveat that issues were observed with certain perfluorooctane sulfonamide ethanols and perfluorooctane sulfonamidoacetic acids after 7 days. These issues are more likely to elevate the observed concentrations of other PFAS compounds via the transformation of these precursors if they are present in the sample.

*** with the caveat that samples may need to be extracted as soon as possible if NFDHA is an important analyte.
**** EPA recommends that samples be frozen if they need to be stored for more than a few days before extraction.
**** with the caveat that issues were observed for some ether sulfonates after 28 days. These issues may elevate the observed concentrations of the ether sulfonates in the extract over time.

Method 1633 Comparability with User Defined?

- Disclaimer: new method, not a lot of commercial samples run yet
 - -Little comparison data available, there are potential procedural differences
 - That said, routine, relatively clean matrices / "usual suspect" PFAS should be comparable
- Obvious questions
 - -Target compound lists, Reporting limits
- More complex matrices?
 - -Comparability concerns w/draft 1633 vs. lab user defined methods possible
 - However, the specific inconsistencies will differ depending on the lab's user defined SOP and the sample being analyzed
 - Interferences due to matrix, AQ particulates, non-target PFAS and linear to branched isomer pattern, etc. could impact each method differently

30

Wrap up Draft Method 1633 Summary

- Aq samples w/particulates
 - -Still a "grey area"
- Bile salt interference check for tissues
- Branched isomers standards for 6 additional PFAS compounds
- Holding time differences
- Obvious benefit from having a final, standardized method for all environmental media

31

Questions?

Jim Occhialini Alpha Analytical Inc.

JOcchialini@alphalab.com

