NEWEA 2022 Spring Meeting

May 22-25

Bretton Woods, NH

UHRIG

Energy from Wastewater A Renewable Resource

Jeff Hammer

Problem: Demand for green buildings increasing rapidly

- Buildings are responsible for 28% of worldwide carbon emissions
- Emissions from heating, cooling, lighting buildings
- Renewable energy is a key factor in the decarbonization of the building sector
- Dense urban areas are unsuitable for traditional on-site renewables → lack of renewable energy sources available on site

Solution: Use the energy that is already there!

- Potential: ≈ 15% of heating/cooling needs in the Western Hemisphere
- Key benefits:
 - Renewable energy source
 - reduces CO₂ emissions
 - counts as Combined Heat and Power (CHP) certificates in many states' Renewable Portfolio Standards (RPS)
 - takes pressure off the power grid \rightarrow climate resiliency
- Key advantages over other renewables:
 - Stored underground
 - Present in abundant quantities
 - operates 24/7/365 with virtually no maintenance
 - No noise caused
 - No large tracts of land needed
 - No sun required

How does it work?

A Heat exchanger

- Extracts energy from the wastewater flowing above
- The wastewater continuously supplies energy

B House connection (lateral)

- Connects the heat exchanger and heat pump
- Brings the transport medium (water or water-glycol mixture) to the heat pump back and forth

C Heat pump

- Regulates the temperature level in the heating circuit in the building or in the heat network
- Uses some electrical power to raise the temperature level of the thermal energy

Therm-Liner Heat Exchanger

Case study: Stuttgart, Neckarpark, Germany, 2018

Tasks

- Harness 2.1 MW of thermal output from a municipal sewer near the project site
- Design, build and install a low-maintenance system to recover energy directly in the sewer
- Developing a solution that combines both cost and environmental benefits

Starting conditions

- Public sewer line available nearby
- Wastewater flow rate: 170 l/s
- Minimum wastewater temperatures: 51 °F

Project specifics: Stuttgart, Neckarpark, Germany, 2018

Framework data / UHRIG Therm-Liner specifications			
Sewer profile		Box	
Profile width / height	2,400	mm	
Minimum wastewater flow	170	l/s	
Minimum wastewater temperature	51	°F	
Thermal output THERM-LINER	2,100	kW	
Inlet temperature THERM-LINER	32	°F	
Outlet temperature THERM-LINER	39.2	°F	
Coefficient of performance heat pump	4.2	COP	
Primary circuit: Water-Glycol. Glycol share:	25	%	
Total length THERM-LINER	985	Ft	
Maximum wastewater temperature drop	3.03	к	

Energy savings and avoided CO2: Stuttgart, Neckarpark

- Energy concept: Bivalent solution with wastewater heat and combined heat and power plant
- Concept: 74% of heating demand satisfied with heat from wastewater
- Energy savings over 20 years: 109,674,783 kWh
- Avoided CO2 over 20 years: 16,482 tons (compared to Stuttgart district heating: 174g/kWh)
- CO2 emissions from heat from wastewater depend on the electricity used in the heat pump (German electricity mix. Averaged over period: 67g/kWh)

Framework data HEAT FROM WASTEWATER Solution
--

Thermal Output THERM-LINER	2,100	kW
Heating hours per year	2,600	h
Thermal energy per year	5,485,739	kWh
Heating energy per year (behind heat pump)	7,722,000	kWh

Conclusions and take aways

- Successful implementation:
 - Exemplary plant successfully in operation and continuously monitored
 - A total of 100+ UHRIG plants in operation in Europe
- Climate friendly:
 - Reduces CO_2 -emissions drastically \rightarrow CHP certificates
 - Exemplary plant avoids almost 1.000 tons CO₂ annually
 - German UHRIG plants avoid more than 6.000 tons CO₂ annually
- Transferable approach:
 - Applicable in almost any public sewer
 - Can be installed in both new and existing sewers
 - Sewer > 16 inch
 - Wastewater discharge > 10 l/s
 - Distance sewer < 2,000/3,000 ft

Thank You!

UHRIG North America

Jeff Hammer Director Energy from Wastewater T +1 412 877 8608 E hammer@uhrig-bau.com UHRIG

UHRG