Planning for Low Effluent Nutrient Limits: Case Studies for Meeting Nutrient Limits in New England through Model Based Evaluation

Edwin Castilla Ph. D., P. E.

NEWEA Spring Meeting May 24, 2022

Jacobs

Challenging today. Reinventing tomorrow.

Agenda

- Planning for Low Nutrient Limit
- Current and Future Permit
- Model-Based Analysis Approach
- Model Development and Calibration
- Model Constraints
- Model Scenarios
- Case Study
- Conclusions

Planning for Low Nutrient Limit

- Planning and designing for future conditions
 - Increase WWTF treatment capacity to accommodate future population growth and sewer connections
 - Nutrients removal upgrades at the facility to meet future effluent permit
 - Robust model-based analysis that predicts performance of existing, future infrastructure and technologies
 - Model-based method that minimize risks associated to uncertainties in designs
 - Model-based method that aids facility planning and assists in the development of facility upgrades strategies

Current and Future Permits

- TMDL based limits
 - Nutrient loading thresholds that protect the receiving water bodies
 - Permits are based on nutrient loading
 - Set 6-month average periods (May October and November - April)
- Future flows based on growth projections
- Increased flow reduced concentration
- Interstate state future nutrient permits
 - More stringent TMDL for most utilities
 - Long Island Sound
 - Massachusetts Bay

©Jacobs 2020

http://longislandsoundstudy.net/2010/07/frequency-of-hypoxia/

Model Based-Analysis Approach

Develop & Calibrate Plant Model

- Plant operational and physical data
- Water quality data
- Facility mass balance
- Calibrated model mimics plant performance

Check Constrains for Modeling Scenarios

- Equipment and process limitations
- Environmental and water quality limitations

Performance Indicators

- Effluent quality
- Performance goals
- Energy consumptions goals

Modelling Scenarios

- Optimization of existing infrastructure
- Determination of plant maximum capacity
- Identification of modelling scenarios

Model Development and Calibration

- Plant historical operational and physical data
 - Liquid and solid streams flows
 - Process unit dimensions and equipment capacity
- Influent wastewater characterization
 - Carbon : COD, sCOD, ffCOD, VFA, BOD, sBOD
 - Nitrogen : TKN, NH₃, NOx and Phosphorus : TP, sP(
 - Others : TSS, VSS, Alkalinity, pH, Harness
- Kinetic and stoichiometric parameters
 - Adjusted for potential inhibiting components (incinerator scrubber water with cyanide)

Model Development and Calibration - Sampling

Analyte	Average Flows and Concentrations – Sampling Period						
	Raw Influent	Primary Influent	Primary Effluent	GT Overflow	Dewater Filtrate	Second Effluent	
Flow (mgd)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
TSS (mg/L)	245	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
VSS (mg/L)	180	\checkmark	\checkmark				
COD (mg/L)	500	\checkmark	\checkmark				
sCOD (mg/L)	205	\checkmark				25	
FFCOD	102	\checkmark					
BOD ₅ (mg/L)	235	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
sBOD ₅ (mg/L)	110	\checkmark					
TKN (mg/L)	40	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
sTKN (mg/L)	32.9					0.8	
Ammonia (mg/L)	28	\checkmark				\checkmark	
NOx (mg/L)	0	\checkmark	\checkmark			\checkmark	
TP (mg/L)	6.5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Ortho-P (mg/L)	3.3	\checkmark	\checkmark			\checkmark	
VFA (mgOD/L)	16	\checkmark	\checkmark				
рН	7.0	\checkmark					

7

 Water quality of other treatment units

Wastewater Characteristic – Observations

	SOLUBLE NON-VFA	61	Fbs - Readily biodegradable	$\frac{77}{500} = 0.154$
	SOLUBLE VFA	16	Fac - Acetate	$\frac{16}{77} = 0.208$
SOLUBLE UNBIODEGRADABLE	SOLUBLE	25	Fus – Unbio soluble	$\frac{25}{500} = 0.05$
	COLLOIDAL	102	Fxs – colloidal slowly bio	$\frac{102}{321} = 0.32$
SLOWLY BIODEGRADABLE	PARTICULATE	219	Fxsp - Non- colloidal slowly bio	$\frac{219}{321} = 0.68$
PARTICULATE UNBIODEGRADABLE	PARTICULATE	65	Fup – Unbio particulate	$\frac{65}{500} = 0.13$
	BIOMASS 2%	10		

- Determine the influent wastewater characterization
 - COD fractions
 - bCOD ~ 1.69 BOD
 - rbCOD impact denitrification, VFA - Bio P removal
 - snbCOD impact effluent sCOD
 - sbCOD particulate/colloidal COD impact PST solids removal. Colloidal can be flocculated.
 - pnbCOD Inert COD impacts sludge production

Wastewater Characteristic – Observations

- Nitrogen fractions
 - NH3-N/TKN majority is Ammonia-N
 - snbTKN important for low effluent TN
 - pnbTKN part of unbiodegradable particulate COD

Wastewater Characteristic – Observations

Influent Wastewater Characterization

Influent	Value	Typical range
Fbs - Readily biodegradable (including Acetate) [gCOD/g of total COD]	0.154	0.12 – 0.25
Fac - Acetate [gCOD/g of readily biodegradable COD]	0.208	0.150
Fxsp - Non-colloidal slowly biodegradable [gCOD/g of slowly degradable COD]	0.680	0.7 – 0.8
Fus - Unbiodegradable soluble [gCOD/g of total COD]	0.050	0.03 – 0.08
Fup - Unbiodegradable particulate [gCOD/g of total COD]	0.130	0.07 – 0.22
Fna - Ammonia [gNH3-N/gTKN]	0.700	0.5 – 0.8
Fnox - Particulate organic nitrogen [gN/g Organic N]	0.500	0.500
Fnus - Soluble unbiodegradable TKN [gN/gTKN]	0.020	0.020
FupN - N:COD ratio for unbiodegradable part. COD [gN/gCOD]	0.035	0.035
Fpo4 - Phosphate [gPO4-P/gTP]	0.500	0.3 - 0.6
FupP - P:COD ratio for unbiodegradable part. COD [gP/gCOD]	0.011	0.011
COD/BOD	2.12	2.05 - 2.5
VSS/TSS	0.73	0.7 - 0.9
TSS/BOD	1.04	0.7 - 1.2
TKN/BOD	0.17	0.14 - 0.24
TP/BOD	0.028	0.02 - 0.05

Secondary Treatment – Sludge Settling Behavior

 $ZSV = Vo Exp^{(-KX)}$

Where : ZSV : zone settling velocity, X : MLSS concentration Vo & K : sludge settleability constants

Ln Vo = 1.53 → Vo = 557 ft/d K = 0.37

Secondary Treatment – Sludge Settling Behavior

Model Process and Equipment Constrains

- Process constraints
 - Wastewater fractions to meet process goal
 - Inhibitors & bacteria maximum specific growth rate
 - Operating SRT for process goals nitrification
 - Sludge thickening and dewatering achievable performance
 - Impact of the return flows (TN and TP)
 - Impact of the RAS (nitrate) in Bio-P process
 - Reactor type & mixing
- Equipment constraints
 - Blower capacity air supply DO concentrations
 - Mixing/aeration capacity
 - Pumping capacity RAS, IRAS, etc.
 - Hydraulic capacity of each process unit

Model Scenarios - 4 Stage BNR & 4 Stage IFAS BNR

- 4 Stage BNR
- Can meet more stringent TN limits

IFAS/MOB

- Can meet more stringent
 TN limits
- Similar configuration to AS
- Requires more aeration capacity
- Requires internal screening

MABR

- Similar configuration to AS
- Requires less aeration capacity
- Membranes installed in anoxic zone

Model Scenarios – 4 Stage BNR & 4 Stage IFAS BNR

Treatment capacity periods

- TN limit of 1,570 lbs/d
- Annual Influent TN loading increment 133 lbs/day
- Projected annual flow increment of 0.4 MGD

Model Scenarios - 5 Stage EBNR & 5 Stage EBNR-PAC (N & P Removal)

Model Scenarios - 5 Stage EBNR & 5 Stage EBNR-PAC (N & P Removal)

Treatment capacity periods

19

- TN limit of 1,570 lbs/d and TP limit of 300 lbs/d
- Annual Influent TN loading increment 133 lbs/day
- Annual Influent TP loading increment 21.7 lbs/day
- Projected annual flow increment of 0.4 MGD

Model Scenarios – Screening Analysis

20

Nitrogen Removal	Treatment Objective		Technology		LCC		Final
Options	Meet Goal	Proven	Operation	Construction	Capital Cost	O & M	Screening
Conventional BNR	\checkmark	\checkmark	\checkmark	\checkmark			
IFAS BNR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
MOB BNR	\checkmark		\checkmark	\checkmark	\checkmark		
MABR BNR	\checkmark	\checkmark	\checkmark	\checkmark			
CEPT BNR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
New Technology BNR	\checkmark						
Nitrogen and Phosphorus Removal							
Options							
Conventional EBNR	\checkmark	\checkmark	\checkmark	\checkmark			
IFAS EBNR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
MABR EBNR	\checkmark	\checkmark	\checkmark	\checkmark			
Fermenter - EBNR	\checkmark	\checkmark	\checkmark	\checkmark			
Chemical - EBNR	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
New Technology	\checkmark						

Case Study – New Haven, CT – ESWPAF

Low-Nitrogen Requirements

- Meet existing standard : 5.5 to 6.5 mg N/L
- Meet future limit : 5.0 to 5.5 mg N/L

Low-Nitrogen Process Alternatives

- 1. Existing MLE process
- 2. 4 Stage Bardenpho
- 3. 4 Stage IFAS Bardenpho

Option 1– MLE Configuration

Option 2 – 4 Stage Bardenpho Configuration

Option 3 –4 Stage IFAS Bardenpho Configuration

Conclusions - New Haven, CT – ESWPAF

- Model-based analysis was driven by the TN permit
- Model-based analysis helped to:
 - Determine the maximize capacity of existing infrastructure
 - Optimize facilities operation and process performance
 - Develop treatment alternatives to meet TN permit
 - Select the right treatment alternative for the project

Conclusions

Model-based analysis is a strong tool that:

- Facilitate planning and designing for future conditions
- Helps to maximize the capacity of existing treatment infrastructure
- Helps to optimize facilities operation and process performance
- Provide basis in the development of facility upgrade strategies
- Helps to minimize design risk reducing design associated capital cost

Acknowledgements

Greater New Haven Water Pollution Control Authority

Questions?

Edwin Castilla, PhD, PE edwin.castilla@jacobs.com

Challenging today. Reinventing tomorrow.

