

Force main break during construction adds complexity to difficult project

Stamford, CT WPCF

Project background

Stamford WPCA - RFQs

Title	Award
Upgrade Raw Sewage Pump Station, Screening, Septage Receiving	Wright-Pierce
Improve Flow Distribution to Secondary Clarifiers	Hazen & Sawyer
Replace Aeration Blowers/Upgrade D.O. Control	Wright-Pierce
Primary Sludge Degritting Improvements	Gannett Fleming
	Arcadis
Effluent Pump Station Improvements	Hazen & Sawyer
UV Disinfection Improvements	Hazen & Sawyer

Project background

Studies/designs proceeded separately

WPCA combined projects for bidding

- Economy of scale
- Single contractor

Separate funding sources

- Three bid forms
- Three Schedules of Values
- Common front end but separate technical specs and drawings
- Three Payment Requisitions

Preliminary treatment improvements

Upgrade raw sewage pumps/piping/valves

• Five 250-hp pumps

Upgrade mechanical screens

- Reduced bar spacing to 3/8-inch
- Screenings grinder and washpress

Odor control improvements

Septage receiving improvements

Replacement of air release valve on force main

Preliminary treatment improvements

Bypass System @ 36 MGD

- Triple 18-inch HDPE Force Mains
- Six bypass pumps
- Excavated to meet suction lift

3 Existing Pumps @ 32 MGD

• 42-inch force main

Seemed like a great plan until . . .

Initial leak at air release structure

Longitudinal crack in 42-inch pipe

Installed additional bypass system

Dual 24-inch Force Mains

18-inch & 24-inch Force Mains

CIPP lining

Inserting liner

Pressure testing liner

Preliminary treatment improvements

Flooding around WPCF

Hurricane Ida – September 2nd, 2022

- Worked around clock to get 42-inch force main back into service
- 8 inches of rain in short duration
- Pumped and maintained 72+ MGD

Stamford WPCF nitrogen removal

2004 BNR upgrade

- Increased aeration tank volume
- Four-stage nitrogen removal
- Fourth secondary clarifier
- Methanol storage and feed system

2016 Upgrade Goals

- Replace existing blowers
- Improve energy efficiency
- Improved D.O. control system

Google Earth

Stamford WPCF nitrogen removal

Nitrogen Removal Performance Excellent Performance

• General Permit Limit = 926 lb/d (2014)

At what cost?

- Generated significant credits
- Significant credit income
 - \$900,000/year (2006 to 2017)
 - Fewer buyers in 2021 \$273,000
- Significant operational cost
 - Aeration/blowers
 - Supplemental Carbon

Operational issues

Google Earth

Small Initial Anoxic Zone

- Ineffective BOD use
- Not maximizing TN removal potential

Large oxic zones

- Excessive DO levels
- Mixing limited conditions encountered
- Limited DO control/balancing

Post anoxic zones

• High levels of methanol required

Process modifications

Google Earth

Convert first oxic zone to anoxic/swing

- Modify baffle wall (still submerged)
- Additional mixing (adaptive mixers)

Minimize mixing limitation in last oxic zone

- Smaller surface area for aeration/mixing
- Reduced D.O. levels, especially at night
- Minimized D.O. in nitrate recycle

Modeling results

- 30% to 40% reduction in air flow requirements
- Significant reduction in methanol usage
- 10% to 15% reduction in waste sludge

Aeration system upgrade

Integrally-geared blowers

- Three blowers at 400-hp each
- Space for fourth blower
- Dual vane control

Automated control valve, D.O. probe, air flow meter at each air drop zone

Nitrogen removal performance

- Avg Effluent TN = 273 lb/d (2019 present)
- Avg Effluent TN = 2.0 mg/L (2019 present)

Methanol consumption

Power usage – fiscal year

UV disinfection improvement drivers

Aging equipment

Algae impacts

Occasional lamp shutdowns due to low water levels

Inadequate disinfection redundancy

More-stringent bacteriological limits (i.e., Enterococcus)

Solution: replace and expand the existing UV disinfection system

NPDES permit limits

Parameter	Sampling Frequency	Sampling Type	Limit	Notes
Bacteriological Limits				
Fecal coliform	3 / week	Grab	88 cfu / 100 mL	Monthly geometric mean
Fecal coliform	3 / week	Grab	< 10%	Percent of samples per month with > 260 cfu / 100 mL
Fecal coliform	3 / week	Grab	2,400 cfu / 100 mL	Maximum
Enterococcus	3 / week	Grab	35 cfu / 100 mL	Monthly geometric mean
Enterococcus	3 / week	Grab	500 cfu / 100 mL	Maximum
UV-Specific Limits				
UV Dose	Continuous	N/A	≥ 30 mW-sec / cm ²	Minimum
UV Transmittance	Work day	Grab	N/A (%)	Monitoring only

Selected alternative

Design Parameter/Characteristic	Value		
Lamp Orientation	Horizontal	*	
Water Depth at Upstream Lamp Bank (in)	35.16	MAYOR DAVID R. MARTIN	PURCHASING AGENT ERIK J. LARSON Phone: (203) 977-4107 FAX: (203) 977-463 Email: <u>elarson@stamfordct.e</u>
Input Power per Lamp (W)	240	CITY OF STAMFOR	D
Lifting Device	External bridge crane	REQUEST FOR PROPOSA	ALS No. 732
Wiper Drive Type	Hydraulic	ULTRA-VIOLET DISINFECT FOR	TION SYSTEM
Lamp Sleeve Cleaning	Mechanical & chemical	STAMFORD WATER POLLUTION CO	ONTROL AUTHORITY
Number of Channels	3	SUBMIT TO:	EBRUARY 7, 2018 @ 4:00 P.M.
UV Lamp Banks per Channel	3 (2 Duty, 1 Standby)	ATTENTION: EF	RIK J. LARSON
Total No. of UV Lamps	936	AT eli RFP BOND: 5'	Γ (203) 977-4107 OR <u>arson@stamfordet.gov</u> %
Total Power (kW)	236	NI O' CC	UMBER OF COPIES REQUIRED: NE ORIGINAL AND TWELVE (12) OPIES, ALONG WITH TWO (2) LECTRONIC VERSIONS (USB
Guaranteed Power at 24 mgd and 67% UVT (kW)	46	DI NOTE THE FOLLOWING: ALL PROPOSAL SPECIFICATIONS A DIRECTLY FROM COUNTY REPRODUCTIONS INC. LOCATE	RIVE) AND DOCUMENTS CAN BE PICKED UP D AT 30 BELIDEN STREET, STAMEORD
UV Dose at Design Conditions (mJ/cm ²)	36.9	CT 06902. TELEPHONE (203) 348-3758. A NON-REFUNDABLE DOCUMENTS. DOCUMENTS. Date Issued: 19/2018	FEE WILL BE CHARGED FOR THESE
Head loss at Peak Flow (in)	4.48	(REV: 09-01-17)	$(u_{i}^{1},u_{i}^{2})=\sum_{i=1}^{n} \sum_{j=1}^{n} u_{i}^{2}$
Minimum Weir Length per UV Channel (in)	81.00		

Project schedule

Design May 2018 – January 2019

Bidding

- Advertise 1/30/2019
- Bid opening 3/12/2019

Construction

- May 2019 August 2021
 - Factory acceptance testing January 2020
 - UV Channels 1 and 2 commissioned July-August 2020
 - UV Channel 3 commissioned June 2021

Construction sequencing

Phase 1: Construction of New UV Channels 1 and 2 in Basin 1

• Continue operating existing UV channels in Basin 2

System commissioning

Functional testing

- Performed by Contractor and manufacturer
- Plant effluent recirculation

Intensive performance testing

- Head loss
- Power demands
- Effluent quality
 - Paired samples of influent/effluent microbiological
 - UVT and TSS

Automatic control performance testing

- 30-day period
- Daily sampling

Phase 1 commissioning

UV channel flow measurement

- Existing approach: directly measure flow over UV channel effluent weir gates
- Revised approach: compare channel water depth to effluent weir gate position

Construction sequencing

Phase 2: Operate New UV Channels 1 and 2 in Basin 1

• Continue operating one existing UV channel in Basin 2

Construction sequencing

Phase 3: Operate New UV Channels 1-3 in Basins 1 and 2

• Prepare remaining channel for future UV disinfection equipment

2022 performance

Project schedule

	2019							2020											2021										
ACTIVITY	J	А	S	0	Ν	D	J	F	Μ	А	Μ	J	J	А	S	0	Ν	D	J	F	М	А	М	J	J	А	S	0	Ν
Raw Sewage Pump Station																													
Exterior Demo/Excavation																													
Bypass Pumping																													
Pumps 4 & 5																													
Pump 3																													
Pumps 1 & 2																													
Force Main Break/Repair																													
Force Main Relining																													
Secondary Treatment																													
Aeration Tank No. 1																													
Blower Replacement																													
Aeration Tank No. 2																													
UV Disinfection																													
Basin 1 Rehabilitation and Conversion																													
UV Channels 1 and 2																													
Basin 2 Demolition and Conversion																													
UV Channel 3																													

Conclusions

Successful collaboration despite competing improvements

- Owner: Stamford WPCA
- Engineers: Wright-Pierce and Hazen and Sawyer
- Contractor: CH Nickerson

