Teaching an Old Dog New Tricks

Troubleshooting & Optimizing Chlorine Disinfection Systems

2023 Annual Conference & Exhibit January 22-25 | Boston

Troubleshooting

Breakpoint Curves

4

Chlorine Overview

- Used in Disinfection since 1850
- Chlorine oxidizes cellular material
- Common types
 - Chlorine gas
 - Bulk liquid hypochlorite solutions
 - On-site generated sodium hypochlorite
- Chlorine as a Disinfectant
 - Free chlorine
 - Chloramines

Chlorine Overview

- 58% use chlorine disinfection 2017/2018 WEF Survey
- Typical strategy uses chloramines, chlorine plus ammonia:
 - Monochloramine Fast reaction, formed first
 - Dichloramine *Much slower, forms after monochloramine*
 - Trichloramine Formed last, not a well understood reaction
- Reasons for low effluent ammonia:
 - Lower nutrient limits
 - Nitrification (partial or full)
- Breakpoint chlorination \rightarrow free chlorine
- Free chlorine strong oxidizer
- Free chlorine may require higher chlorine dose

Troubleshooting

Breakpoint Curve

Breakpoint Curve

CDM

Smith

Troubleshooting

Breakpoint Curves

4 (

Troubleshooting

Nitrification

NH₃-N + 1.5 O₂ + Nitrosomonas → NO₂⁻ + H₂O + H⁺ NO₂⁻ + 0.5 O₂ + Nitrobacter → NO₃⁻

- NH₃-N between 1 to 3-mg/L
 - Can chloraminate
 - Use lower chlorine dose
 - Requires careful attention to dosing control system
- NH₃-N less than 1-mg/L
 - Challenging to chloraminate
 - Form FRC
 - CRCs may exert high chlorine demand

Troubleshooting

- Revisit instruments
 - TRC analyzers
 - FRC analyzers
 - Oxidative Reduction Potential (ORP)

MEASURED RESIDUALS (mg/L)

- Ammonia analyzers
- Keep them calibrated

Textbook Breakpoint Curve 5 5 TRC 4 4 3 3 2 2 1 0 0 0 2 9 10 11 Measured TRC (mg/L) 1

CHLORINE DOSE (mg/L)

SCADA Readout

Troubleshooting

- Sample upstream of disinfection for :
 - pH
 - NH₃-N
 - Nitrite (1 mg/L reacts with 10 mg/L of chlorine)
 - Nitrate
 - Organic-N = TKN NH₃-N
 - Concentration of indicator organisms
- Biological process adjustments
 - Reduce solids retention time
 - Control dissolved oxygen

2 Breakpoint Curves

Optimization

- Manual control
- Flow pacing
- Compound control loop
- CT based approach
 - Disinfection efficacy tied to CT
 - Integrated CT more accurate representation
 - Three components of disinfection
 - Disinfectant kinetics
 - Inactivation kinetics
 - Hydraulic efficiency of contact ve

Optimization – Disinfectant Kinetics

$$TCT = \frac{C_o - D}{k} * (1 - e^{-kt})$$

Where:

1

- C_o = Initial disinfectant dose
- D = Disinfectant demand
- k = Decay of disinfectant over time
- t = Contact time

Optimization – Inactivation Kinetics

- $N = N_o(1 B)e^{(-K_d * ICT^m)} + (N_o \times B)e^{(-K_p * ICT)}$
- Where:
 - N = Bacteria count after applied ICT
 - N_o = Initial bacteria count
 - B = Coeff for particle based bacteria
 - *k_d* = Decay rate for dispersed bacteria
 - k_p = Decay rate for particlebased bacteria
 - m = Coeff for magnitude of k_d

Optimization – Hydraulic Impacts

- Theoretical contact time
 - Tank Volume

Flow Rate

- Determine true hydraulic efficiency
 - Computational fluid dynamics
 - Physical modeling
 - Tracer study
- True contact volume
- Accurate flow measurement
- Baffling factor range 0.3 up to 0.7
- Mixing zone needs to be considered

ICT Dose Pacing Performance

ICT Dose Pacing reduces chemical usage by ~50%

Optimization - Example

- Dose Response Testing
 - Undisinfected sample
 - Apply various chlorine doses
 - Collect samples at various contact times
 - Measure:
 - Bacteria counts
 - Total Residual Chlorine
 - Free Residual Chlorine
 - Number of water quality parameter for undisinfected

Optimization – Example

- Determine log inactivation
- Historical data analysis
- Undisinfected bacteria

Optimization - Example

ICT to determine dose

1

2

3

4

	Peak Daily Flow	Max Month	Future Average Day	Current Average Day
Flow (mgd)	309.9	191.9	135.9	116.9
Actual HRT (min)	27	45	55	63
Required Residual (mg/L) to Achieve an ICT	3.42	2.06	1.71	1.49
Chlorine Demand (mg/L)	1.26	3.1	3.1	3.1
Required Dose, Including Chlorine Demand (mg/L)	4.68	5.16	4.81	4.59

Optimization

- ICT with real time control
 - ICT value
 - Actual contact volume
 - 4-20mA flow signal
 - Real Time *D* and *k* from online TRC
- Simplified ICT control
 - ICT value
 - Actual contact volume
 - 4-20mA flow signal
 - D and k from dose response testing

In Conclusion

- Chloramination depend upon upstream processes
- Understanding undisinfected water quality is key
- Maintain instruments
- Various control options
- Hydraulic impacts
- Optimizing with ICT

Connect With Us!

Find more insights through our water partnership at cdmsmith.com/water and @CDMSmith

Brian Hilts, PE

CDM Smith Water Reclamation Disinfection Discipline Leader 518-7825-4504

HiltsBA@cdmsmith.com

