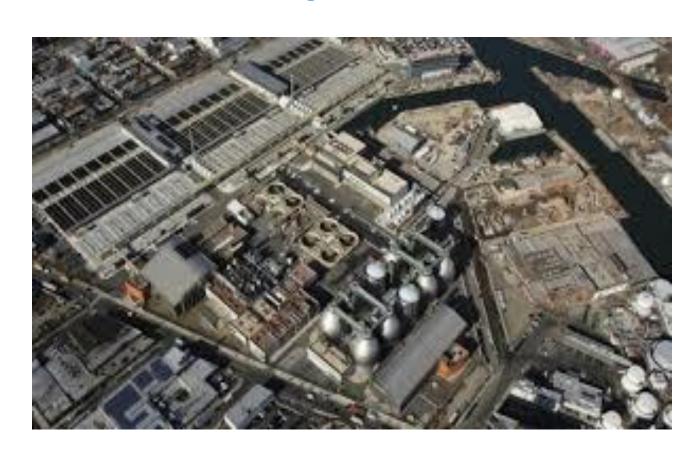


Understanding Sewer Slope Transitions – Reduces Odor/Corrosion Impacts!

Richard J. Pope, P.E., BCEE
Odor Services Leader
Vice President Hazen and Sawyer


Wastewater Historical Perspective

Focus on WWTPs/WRRFs

- Complaints accused
- Visible
- Community: Smell with their eyes

Collection System (CS)

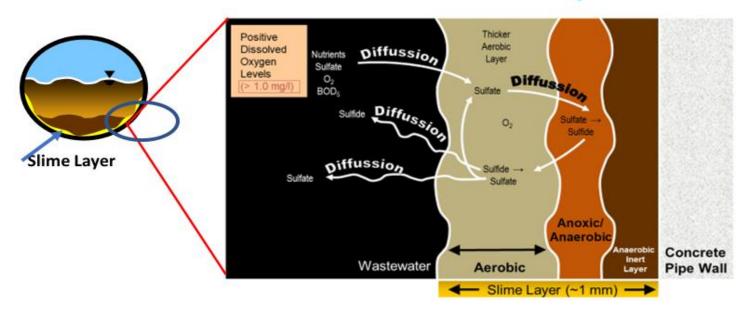
- 00S/00M
- Not well understood
- Largely ignored

Wastewater Historical Perspective

CS Design Intent

- Transport community ww
- Long term

Poor Understanding:

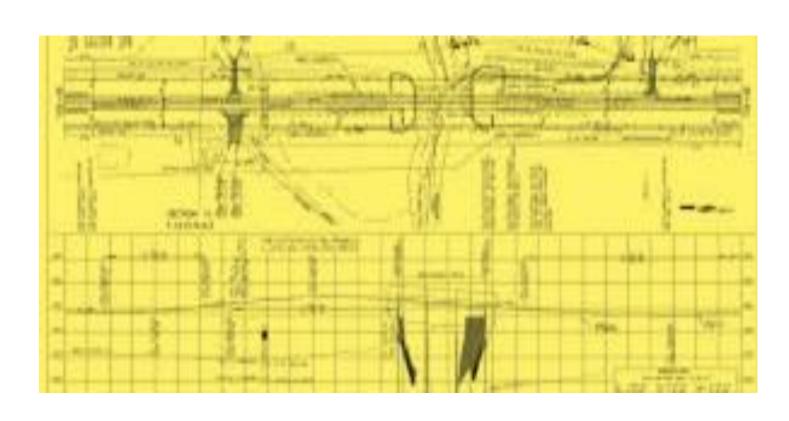

- Supported odor formation
- Created corrosive conditions
- Trouble Underground!?

Reality Kicks In!

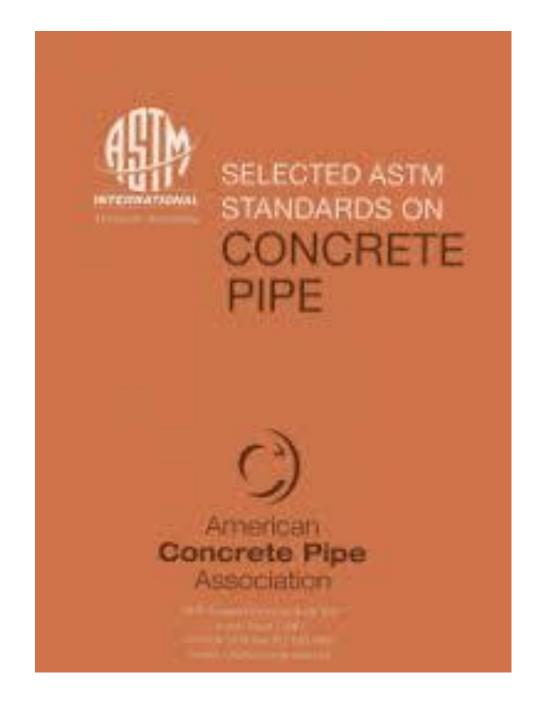
- Asset Management
 - Inspections revealed issues
- Odor formation documented
- Supporting conditions understood
- Impacts are REAL:
 - Nuisance odors
 - Community Complaints
 - System corrosion
 - Infrastructure compromised!

Sulfide Formation - Close Up

Solutions


- Identify Hot Spots
- Housekeeping Steps
- Protect Surfaces
- Add Chemical
- Extract & Treat

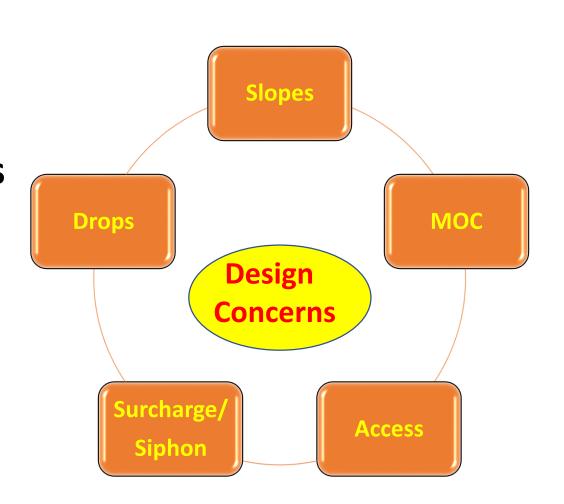
All steps designed to mitigate odors and corrosion!


Historical Sewer Design

- Sewer Designs
 - Connect A with B
 - Follow grades/streets
 - Insert LS/PS where needed
 - Install siphons when can't go over or around
- Did Engineers anticipate
 - Design impacts
- How Physical layouts:
 - Can exacerbate
 - Odor Formation
 - Odor Stripping
 - Release to Atmosphere

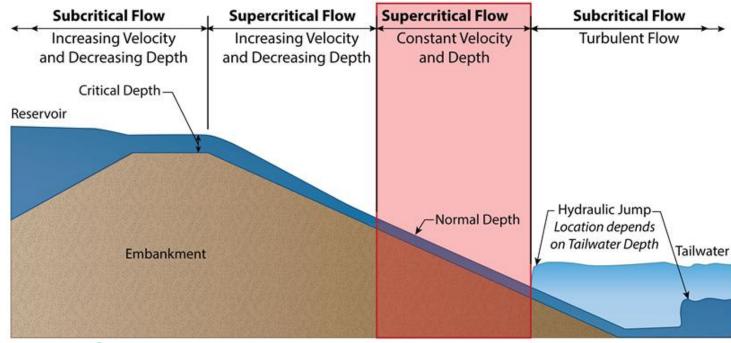
Moving Forward

- Review and enhance sewer designs
 - Consider Materials of Construction
 - Understand odor formation & release
 - Reduce turbulence
 - Build in controls



Working With What We Have

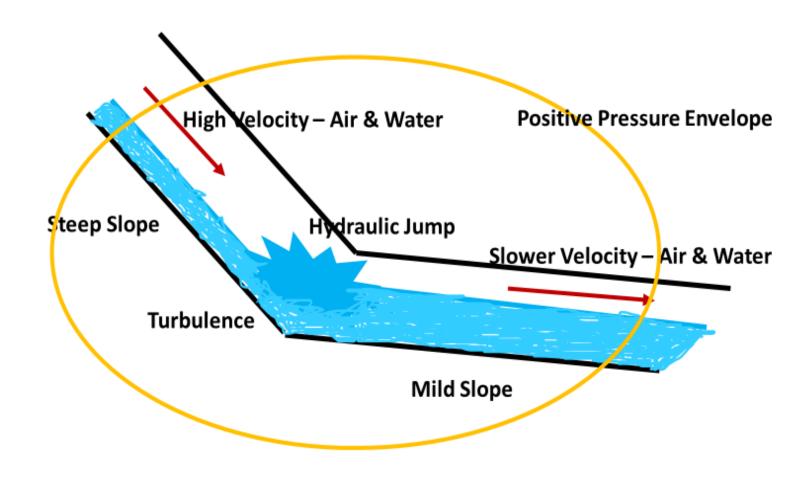
Replacing is not an Option


Understanding Existing Conditions

- Create Workable/Viable Solutions
 - KISS Approach
- Set Criteria for Future Designs

Example: Physical Layout Implications

- Condition Statement
 - Steep to Flat/Mild Slope Intersection
- Common Location
 - FM break to gravity
- Cannot/Difficult to Avoid
- Awareness
 - Recognize conditions
 - Protect infrastructure
 - Mitigate odors


As part of DESIGN!

Steep to Flat/Mild Slope Conditions

- High velocity
 - Air
 - Water

MEETING

- Lower velocity
 - Air
 - Water

Result

Hydraulic Jump: Creating

- Turbulence
 - Stripping
- Positive air pressure envelope
 - Up & Downstream
 - Looking for a way out!

Case Histories

Three Different Scenarios

• 1.) Northern Kentucky (KY)

• 2.) Westchester County (NY)

• 3.) Northern Kentucky (KY)

CASE HISTORY #1: NORTHEN KENTUCKY

Background

- PS -- FM
 - 3 mile FM
- Break to gravity
 - Top of ravine
- Connects to Interceptor
 - Bottom of ravine

Background

- Gravity connector
 - Steep slope
- Shortly before & at Interceptor
 - Mild to flat slope
- Connection
 - 90° "T" connection

Problems

- Turbulence
 - High velocity of steep slope
 - Hydraulic jump at intersection
 - Abrupt stop @ "T" connection
 - High H₂S released
- Positive DP
 - Hydraulic jump
 - Dead end "T" connection

FM Stats:

- ∘ Length 3 miles
- o Diameter 30"
- o Q=8 mgd
- o Slope 20%
- o H₂S
 - Avg. 250 ppm
 - Max. >500 ppm

Problems

- Positive DP plume spread out
 - Wide zone of influence (ZOI)
 - Up/Downstream of interceptor
- Upstream
 - Lateral connections
 - New expensive Townhomes
 - Odor complaints
- Downstream undeveloped
 - Open & undeveloped land

Solutions

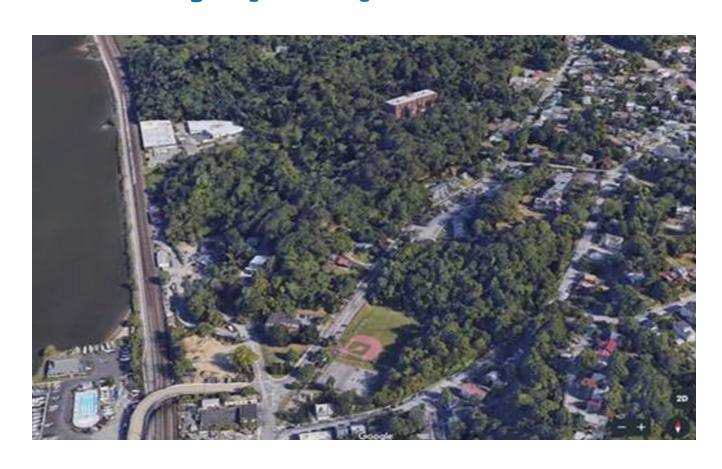
- Reconnect to interceptor
 - Wye connection
 - Smoother transition
 - Reduce (not eliminate) turbulence & DP plume
- Initial Plan
 - Vapor phase odor control
 - Select biofilter
 - Cost estimate: \$1-2M

Additional Option

Open land to Plant

Propose

- Contain odors/Push downstream
- Close up sewer vents
 - Protected surfaces
- Flaps on laterals
- Solid MH covers
- Vent to atmosphere



Simple Solutions are Always Best!

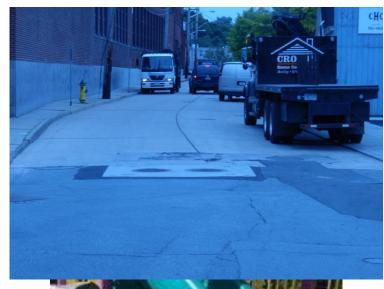
CASE HISTORY #2: WESTCHESTER COUNTY

Westchester County (NY)

- Background
- PS FM (4-5 miles)
- FM break to gravity
 - Top of hill
- Steep slope
 - Length: ~ ½ mile
- Bottom
 - Flattens out
- Runs into Inverted siphon (short)

Westchester County

Two separate sewer lines on steep slope


- Village
 - Fresh wastewater
 - Low odors
- County
 - FM discharge
 - Septic
 - "No" flow when FM off
 - High odors

Connect Downstream (at toe of slope)

Westchester County

- Before combine along steep slope
 - Neighborhood Park
 - Residences
- After combine along mild slope
 - Inverted Siphon short length
 - Industrial area

Conditions of Concern

Problems

- Turbulence
 - Along length
 - Hydraulic Jump
 - Transition (steep to mild)
- Negative Differential Pressure (DP)
 - Upper length
 - Wastewater drag
- Positive DP plume
 - Lower length
 - Jump
 - Siphon
- Backing up line

To Park and Homes

Alternative Options

Solutions

- Physical
 - Too costly
- Recommended
 - Vapor phase control
 - Carbon
 - Near Park & siphon
 - Chemical addition at PS
 - Magnesium Hydroxide
 - Very effective
- Complaints way down!

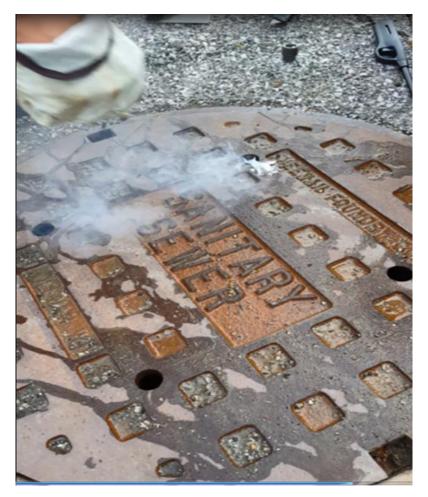
CASE HISTORY #3: NORTHERN KENTUCKY

Background

- FM
 - Break to gravity
 - Steep slope
 - Less steep slope
- Community along steep slope
 - Odor complaints
 - Odor in homes

Background

- PS operations
 - 1 Pump start/hour
 - Average run time: 3.3 minutes


• FM − 18" Ø

- Gravity slopes
 - Range: 0.95% to 18%
 - Velocities: 6 to 15 fps
 - Hydraulic jumps

Field Monitoring

- Sewer smoke testing
 - Nearly all roof vents smoked
 - No smoke in homes
- Manhole smoke testing steep slope
 - PS OFF
 - Slow pull into sewer
 - PS ON: 2 scenarios
 - 1. Significant force blowing out -- Before flow reaches location
 - 2. Considerable force pulling in -- As flow passes location

Unusual condition, but makes sense

Field Monitoring


- Differential Pressure
 - Near "0" Pump off
 - Positive Pump on no flow observed
 - Negative Pump on flow observed
 - High wastewater velocity
 - Drags air
 - Creates vacuum

Drained house plumbing traps!!!

Problem

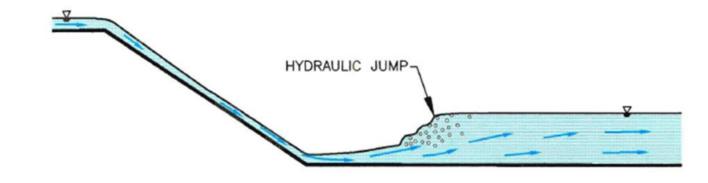
- One pump cycle
 - Drain house trap
- Subsequent pump cycles
 - Odor into homes

- Solutions
- Observed can reduce "-/+" DP
 - MH lids removed
- Replace with vented lids
 - Require odor control
 - Carbon inserts
- Positive & Negative mitigation
 - Air admittance valves
 - Cleanouts with vents outside homes
 - Inline check/flap lateral valves

Utility Approach

New chemical feed pumps

Add grated lids


Carbon inserts

Conclusions – Collection Systems

- Physical layouts can create problems
- Answers not always system modification
 - Chemical addition
 - Use downstream release
 - Adjust pump cycles
 - Reduce pressure
- Moral of Story

Observe -- Monitor -- Review -- KIS

Find Your Path to Being a "Good Neighbor"

Speaker Information

Richard J. Pope, P.E., BCEE

Odor Services Leader

Vice President Hazen and Sawyer

E-mail:

rpope@hazenandsawyer.com

Phone:

Mobile: 914-450-6735

