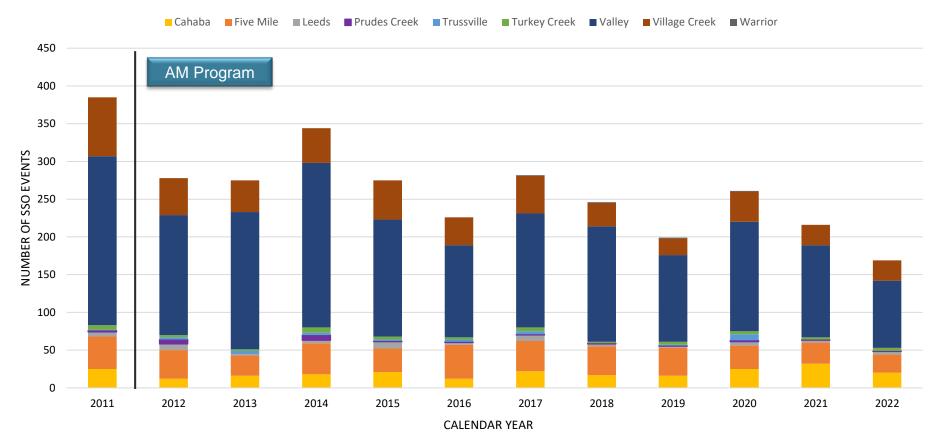


Optimizing a Capital Improvement Program – How to Measure and Improve Effectiveness

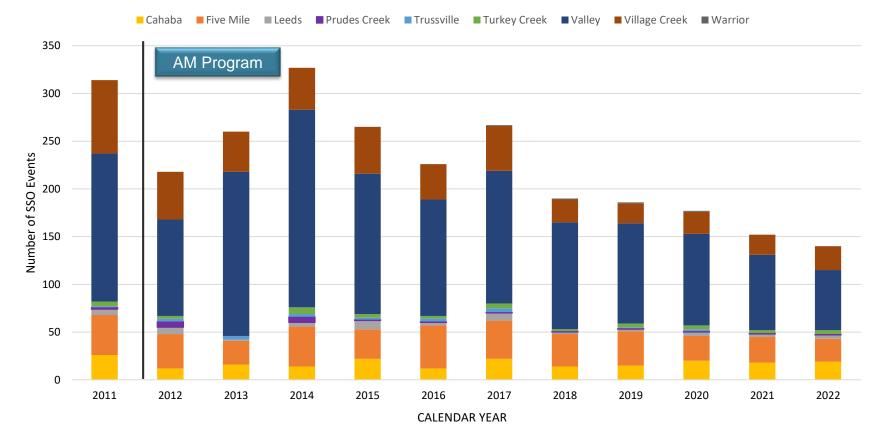
> Stephen King, P.E., BCEE Hazen and Sawyer

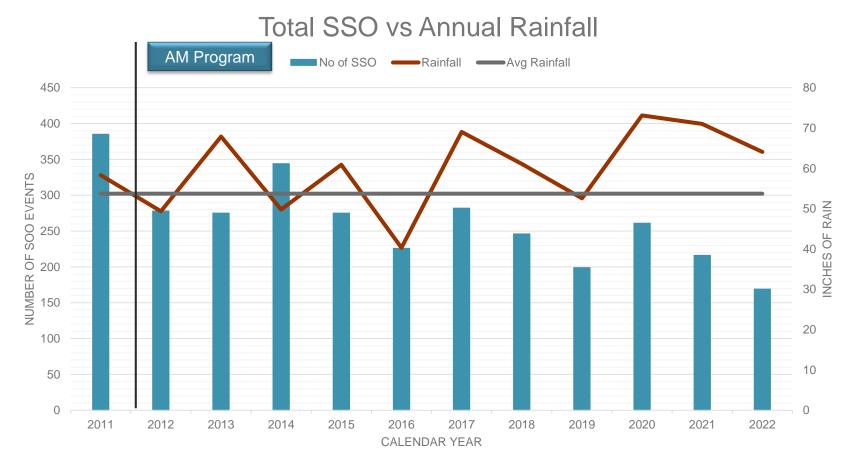
New England Water Environment Association 2023 Annual Conference January 23, 2023



System Performance (Is the CIP Effective?)

System Performance – All SSOs by Count


Total Number of SSO and Bypass Events per Basin per CY


System Performance –SSOs by Count (Excluding >2yr Storm)

Total Number of SSO and Bypass Events per Basin per CY (Excluding >2yr storm)

SSO Counts Compared to Rainfall Totals

Note: Rainfall data as recorded at the Birmingham Airport

SSO Counts (Excluding >2yr Storm) Compared to Rainfall Totals

Total SSO (Excluding >2yr Storm) vs Annual Rainfall

Note: Rainfall data as recorded at the Birmingham Airport

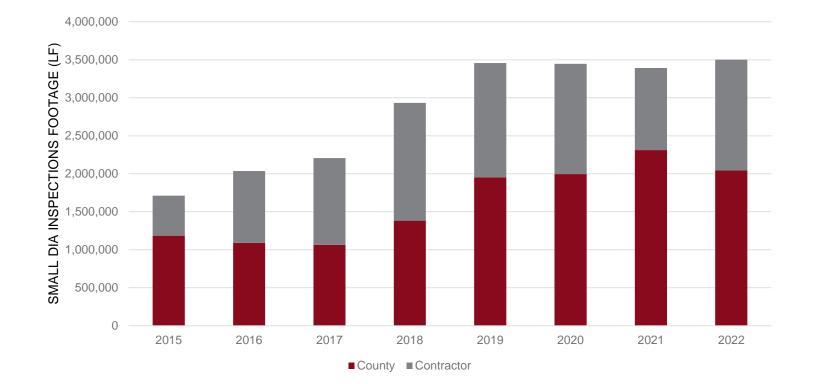
Asset Condition Assessment and Management (Informed Decision Making)

Structural Failures

Infiltration Gusher

Fractures

Collapsed Pipe


I/I Source Detection

Utilizing various technologies to narrow down sources of I/I for follow-up CCTV inspection

I-Trackers ۰ WARRIOR Legend Flow Monitor Flow Meters • Echo Mission Units at pump stations ۲ TRKEV CREEK ADS Echo's ۰ TRUSSVILLE Model • PRUDES CREEK FIVE MILE CRIOK VILLAGE CREEK AHABA RIVER SHADES CREEK **Jefferson County** Asset Management Program Flow Monitors and Echo

Small Diameter Assessment Program (Pipe <24")

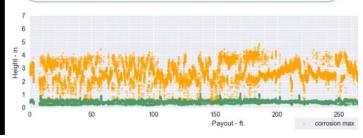
Large Diameter Assessment Program (Pipe > 24")

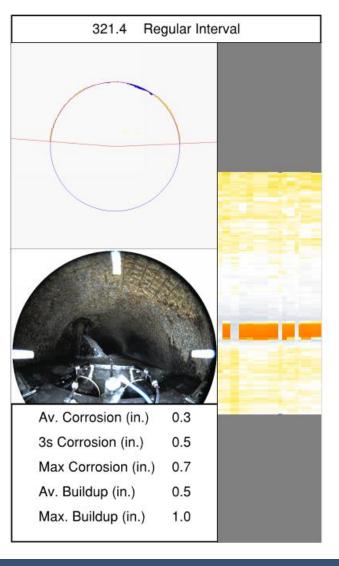
- Assesses structural condition, measures debris levels and confirms corrosion models
- Data is used to schedule rehab, repairs or reinspection
- Data is also fed back into the model to improve accuracy

Large Diameter Inspection Phases	Total LF	Status	-Pipe Loss -Above flow Laser
Phase 1 (included portions of Shades Creek, Valley Creek, Five Mile Creek, Village Creek, Leeds and Cahaba River basins)	355,644	Completed in FY 2018	Sonar -Sediment qty -Obstructions -Below flow Sonar Sonar
Phase 2 (includes Shades Creek and Five Mile Creek basins)	222,318	Completed in FY 2020	
Phase 3 (includes remainder of large diameter sewers)	332,100	Completed in FY 2021	Multi-Sensor Inspection
Total	910,062		

Laser -Corrosion

Hazen & Sawyer


Upstream Manhole: MH009053-082676-015 Downstream Manhole: FT009053-077591



Payout: 320.2 2017-07-19 17:16:46

Corrosion avg in: 0.58Buildup avg in: 0.42Corrosion max in: 3.26Buildup max in: 1.43

Large Diameter Phase 1 Results

- Approx. 122,000 LF of large diameter pipes will need rehabilitation within the next 5 years
 Remainder of the pipes are slated for reinspection within the next 10-15 years
 16,100 LF of pipes will require heavy cleaning to remove debris

Phase 1 Structural Recommendations

Phase 1 O&M Recommendations

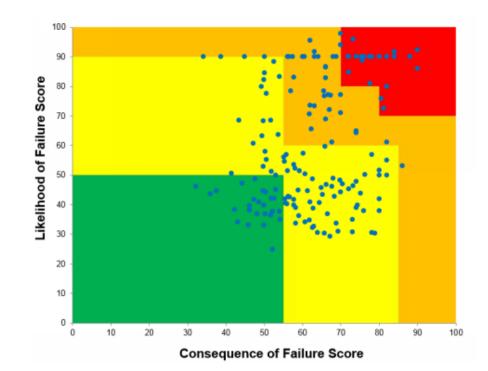
Asset Renewal

• Over 62 miles of pipe repair/replacement or rehabilitation have been completed

Completed to Date*											
Mainline Replacement (LF)	Point Repairs (LF)	Mainline CIPP (LF)	CCTV Inspection (LF)	Manhole Inspections (EA)	Manhole Rehab (EA)						
170,432	21,577	529,982	21,444,043	55,331	3,667						

*2015 through 2022

ASSET RENEWAL


■ Mainline Replacement ■ Point Repairs ■ Mainline CIPP

Pump Station Risk-Based Prioritization

- Performed assessments on 170 of 178 total pump stations (132 MGD in firm pumping capacity)
- 25 Pump Stations identified as Critical (31 MGD in firm pumping capacity) and are either currently under design or are scheduled for design

Pump Station Upgrades	Planned Targets for Completion											
	Units	FY2019	FY2020	FY2021	FY2022	FY2023						
Pump Station Firm Capacity Improvements	MGD (132 MGD of Total PS Firm Capacity)	1 PS 6.2	2 PS 0.4	0 PS 0	8 PS 3.1	14 PS 12.5						

Vertical Asset Management

- Assessment of all major equipment, structures, electrical and instrumentation systems at each of the nine (9) Water Reclamation Facilities to determine current and future needs.
- Currently in inventory, prioritization and CityWorks implementation phase
- Data will be used to develop a prioritized list of equipment and structural needs at each WRF.

Belt Presses, Cross Conveyors, and Transfer Conveyors

termediate Clarifier – Internals – Peeling of the topcoat was typical throughout Intermediate Units exposing a white colored undercoat/product.

Wet Weather Management Program (High Cost Problems Require Efficient Solutions)

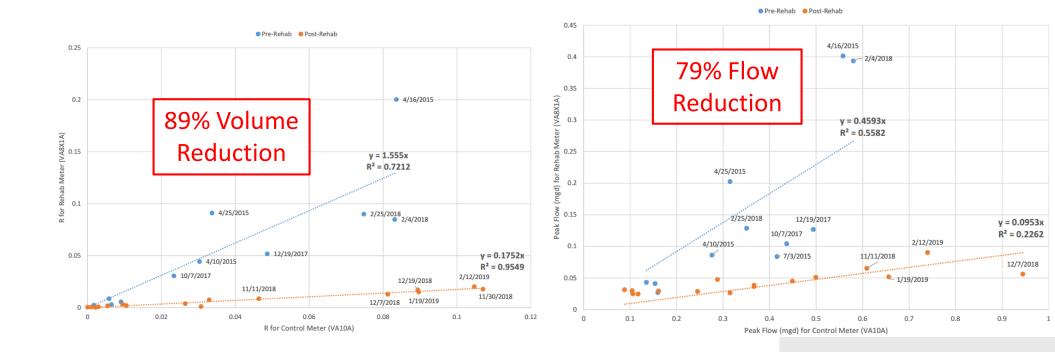
Chapel PS I/I Reduction Cost Comparison – Comprehensive Rehabilitation vs. Upsizing

Upsizing									
ltem	Cost								
1,780 LF of 15-inch Gravity Pipe	\$700,000								
1,020 LF of 6-inch Force Main	\$140,000								
New 0.6 MGD Pump Station	\$360,000								
Construction Contingency (30%)	\$360,000								
Total Construction Cost	\$1,560,000								

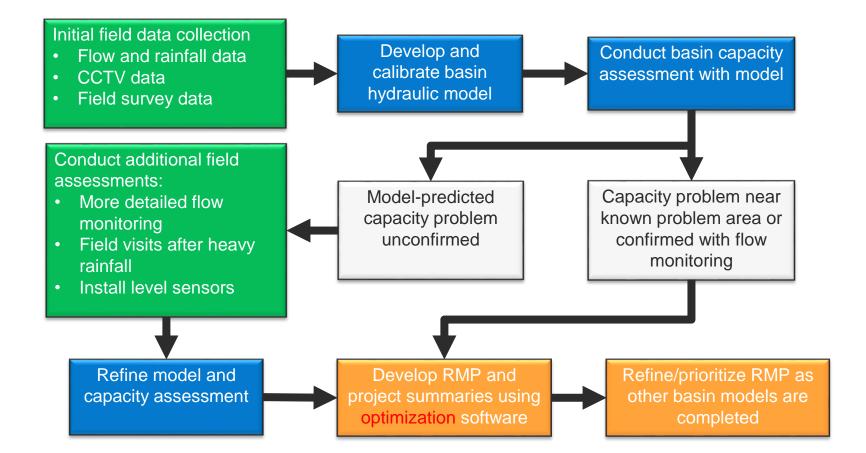
Comprehensive Rehabilitation

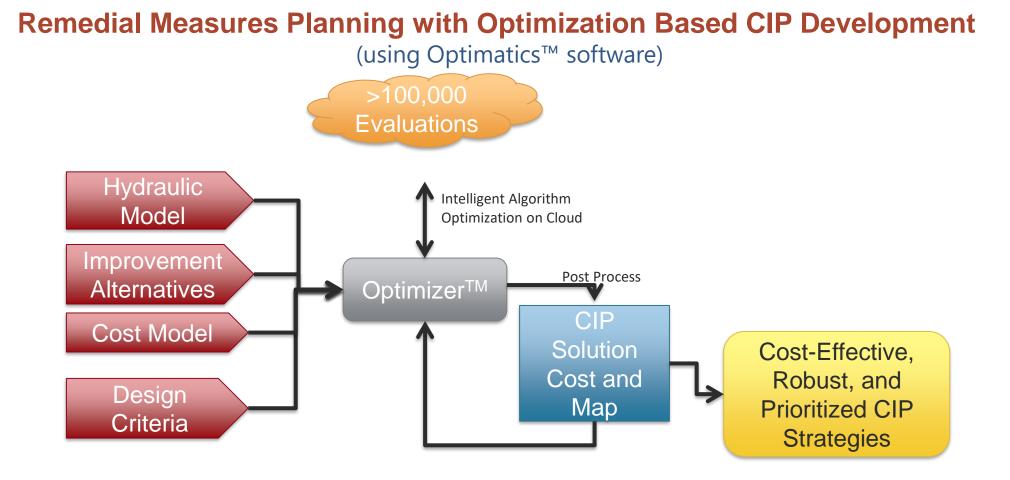
Cost as Bid	\$810,295.50
Cost at Closeout	\$776,381.50

Status	Services (Each)
ACTIVE	89
INACTIVE	100
TOTAL	189



Mainline with full circle wrap


Service line CIPP


Chapel PS I/I Reduction - Comp Rehab Results

Remedial Measures Plan (RMP) Development Process

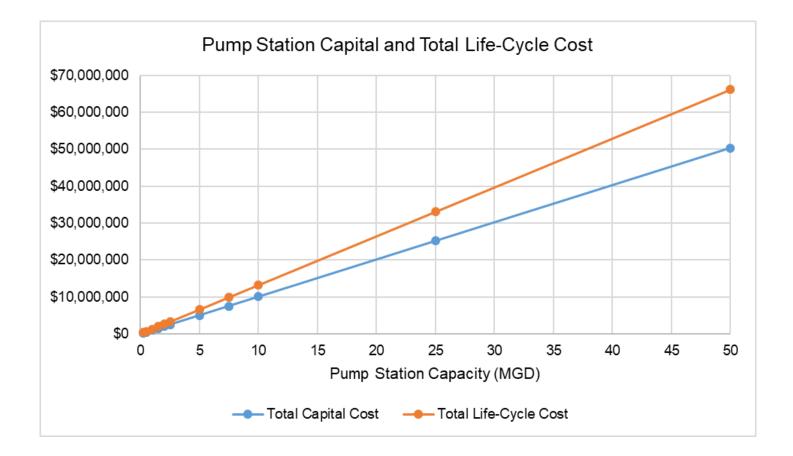
Optimization Refinement, Scenarios, and Risk/Sensitivity Analyses

Unit Cost Rates – Basis of Cost

Total Life Cycle Cost = Capital Cost + PV O&M + PV Replacement

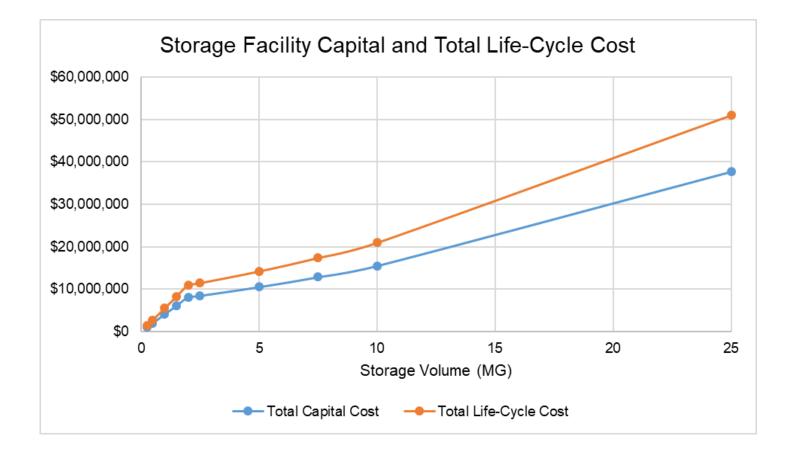
Present Value Variables										
Analysis Period (years)	n	100								
Effective interest rate	ER	5.0%								
100-Yr PV Annual Cost Multiplier	PV	19.85								

Annual O&M Costs							
Storage Facilities	1.5%						
Gravity & Pressure Mains	0.3%						
Pump Stations (\$/MGD)	\$4,820						

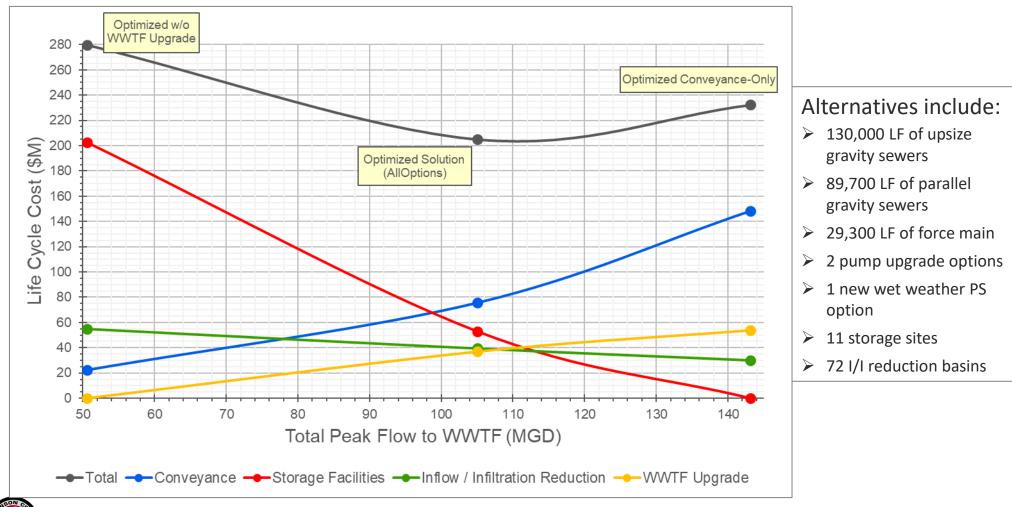

Asset Life										
Asset	Expected life (yr)	PV Replacement Cost over Lifespan (% capital)								
Gravity Pipes	80	2.04%								
Pressure pipes	60	5.61%								
Storage Tank	60	5.61%								
Pumps stations	35	21.98%								

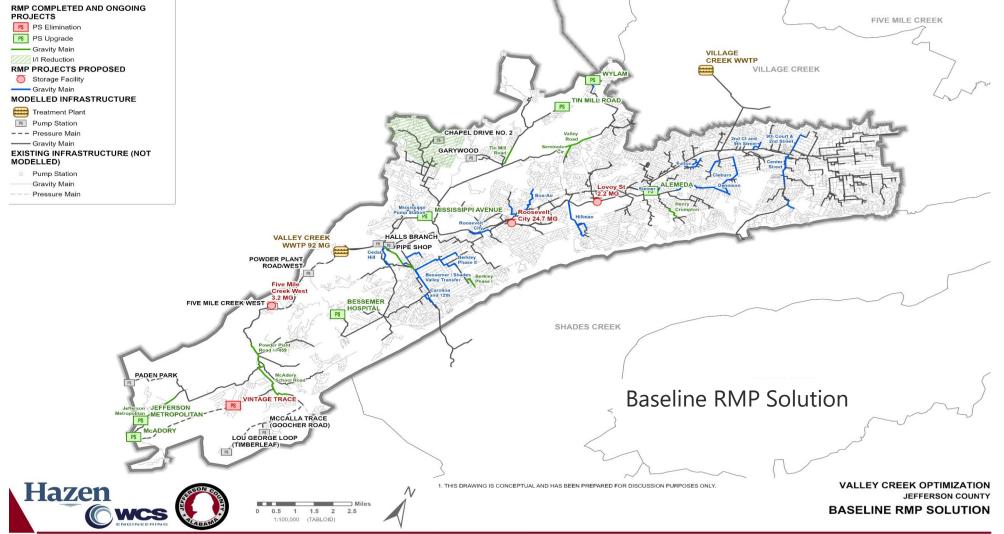
Unit Cost Rates – Example Pipe Unit Costs Hazen Course

Total Life Cycle Cost = Capital Cost + PV O&M + PV Replacement

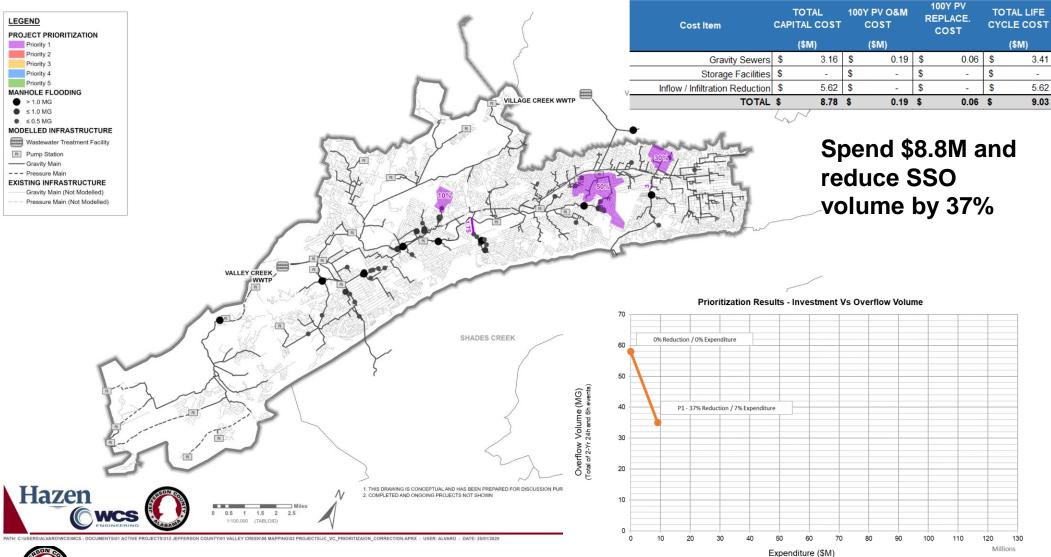

	pital Costs for Gravity Sewers - Frenched No Surf Rest (New)			Life Cycle O&M Trenched N				Life Cycle Rep. Trenched N						Cost for Gravity hed No Surf Rest	
Pipe Diameter (feet)	<15'	>15'		Pipe Diameter (feet)	<15'	>15'		Pipe Diameter (feet)	<15'	>15'		Pipe Diameter (feet)	<15'	>15'	
0.67	\$468	\$584		0.67	\$28	\$35		0.67	\$4	\$4		0.67	\$499	\$624	
0.83	\$488	\$610		0.83	\$29	\$36		0.83	\$4	\$5		0.83	\$520	\$650	
1.00	\$512	\$640		1.00	\$30	\$38		1.00	\$4	\$5		1.00	\$546	\$682	
1.25	\$555	\$693		1.25	\$33	\$41		1.25	\$4	\$5		1.25	\$592	\$740	
				1.50	\$36	\$45		1.50	\$5	\$6		1.50	\$647	\$808	
1.50	\$606	\$758		1.75	\$40	\$50		1.75	\$5	\$6		1.75	\$710	\$887	
1.75	\$665	\$831		2.00	\$44	\$54		2.00	\$6	\$7		2.00	\$780	\$976	
2.00	\$731	\$914		2.25	\$48	\$60		2.25	\$6	\$8		2.25	\$859	\$1,073	
2.25	\$805	\$1,006		2.50	\$53	\$66		2.50	\$7	\$8		2.50	\$943	\$1,179	
2.50	\$884	\$1,105	+	3.00	\$63	\$79	+	3.00	\$8	\$10	=	3.00	\$1,132	\$1,415	
3.00	\$1,061	\$1,326		3.50	\$75	\$94	-	3.50	\$10	\$12		3.50	\$1,342	\$1,677	
3.50	\$1,258	\$1,572		4.00	\$88	\$110		4.00	\$11	\$14		4.00	\$1,570	\$1,963	
4.00	\$1,471	\$1,839		4.50	\$101	\$126		4.50	\$13	\$16		4.50	\$1,812	\$2,265	
4.50	\$1,698	\$2,123		5.00	\$115	\$144		5.00	\$15	\$18		5.00	\$2,065	\$2,581	
5.00	\$1,935	\$2,418		5.50	\$130	\$162		5.50	\$17	\$21		5.50	\$2,324	\$2,905	
5.50	\$2,178	\$2,722		6.00	\$144	\$180		6.00	\$18	\$23		6.00	\$2,586	\$3,232	
6.00	\$2,423	\$3,029		6.50	\$159	\$199		6.50	\$20	\$25		6.50	\$2,847	\$3,559	
6.50 7.00	\$2,668 \$2,908	\$3,335 \$3,635		7.00	\$173	\$216		7.00	\$22	\$28		7.00	\$3,103	\$3,879	
				7.50	\$187	\$234		7.50	\$24	\$30		7.50	\$3,351	\$4,189	
7.50	\$3,140 \$3,261	\$3,925 \$4.201		8.00	\$200	\$250		8.00	\$24 \$26	\$30 \$32		8.00	\$3,587	\$4,484	
8.00	\$3,361	+ / -		8.67	\$200 \$216	\$250 \$270		8.67	\$20 \$28	\$32 \$35		8.67	\$3,875	\$4,844	
8.67	\$3,632	\$4,540 \$4,765													
9.17	\$3,812	\$4,765		9.17	\$227	\$284		9.17	\$29	\$36		9.17	\$4,068	\$5,085	

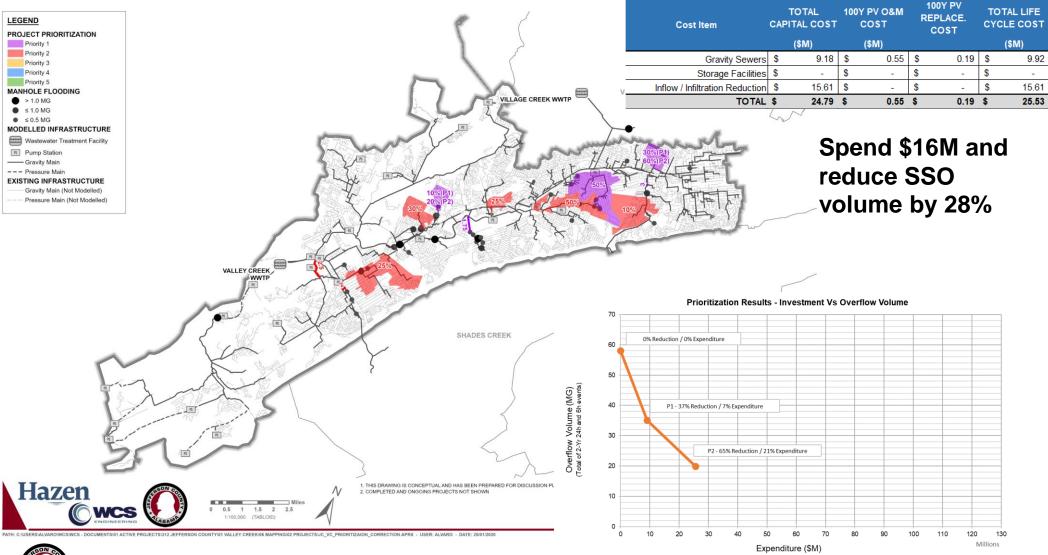
Unit Cost Rates – Pump Station Upgrade Hazen Ourse

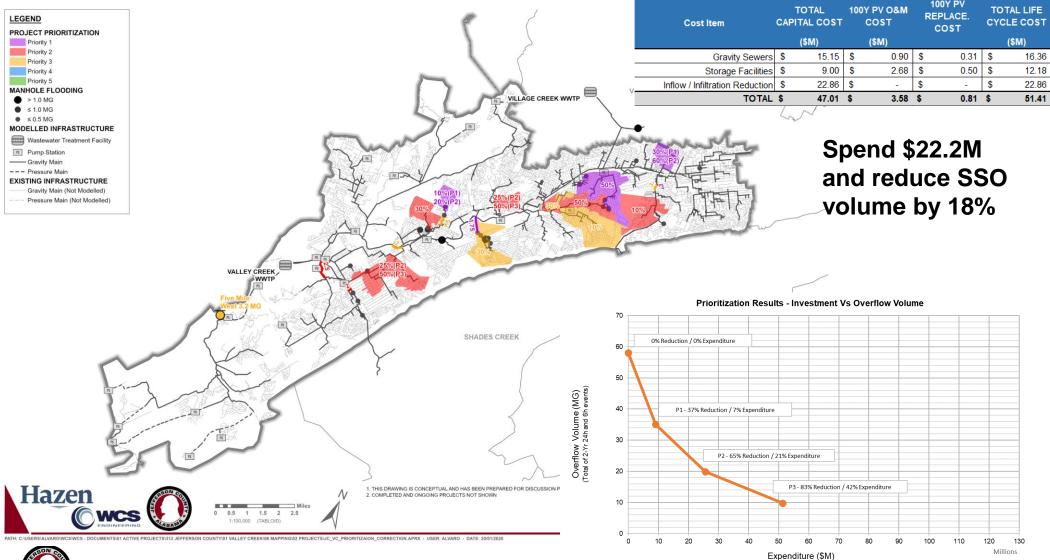

Unit Cost Rates – Storage Tanks



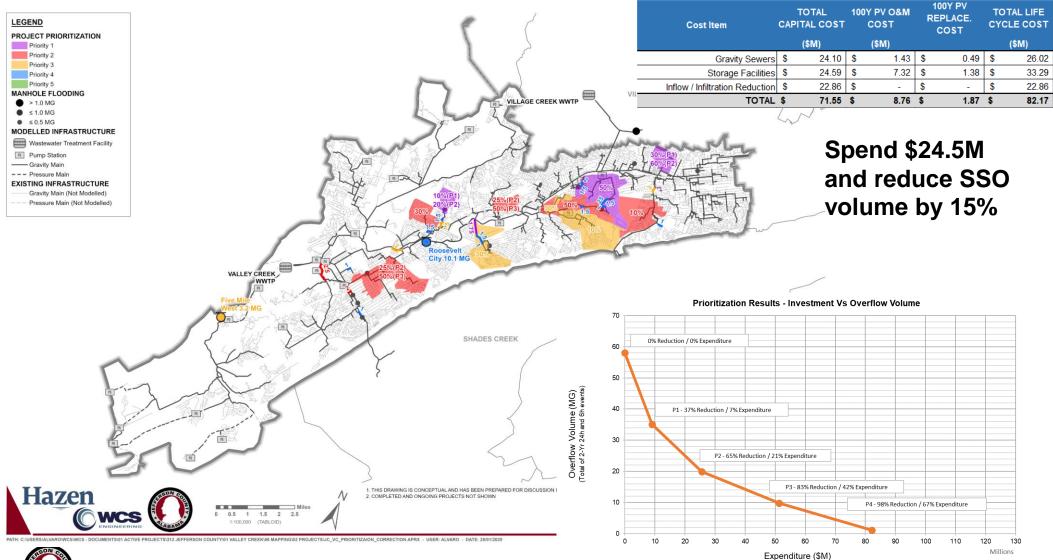
		Mey I/	May I/I Davis	May I/I Davi		Av.	Discourse						Conserv	vative I/I Opti	ons				
Flow Meter Catchment (FMC) ID	Average R	Max I/I Reduction		Max I/I Red. Conservative	\$/LF	Remain. Life (yrs)		t Total FMC Length (LF)	I/I Opt. 1	I/I Opt. 1 Cost	/ Op 2	ot. I/I Opt. 2 Cost	I/I Opt. 3	. I/I Opt. 3 Cost	I/I Opt. 4	I/I Opt. 4 Cost	I/I Opt. 5	I/I Opt. 5 Cost	I/I Reduction Alts / Costs -
UPPERVALLEY-UV1_Flow_NET	27%	65%	60%	30%	\$ 95	53	\$8	8 26,948	0%	\$	- 10%	6 \$ 790,475	5 20%	\$ 1,580,949	30%	\$ 2,371,424			Conservative
UPPERVALLEY-UV10_Flow_NET	4%				\$ 95	49	\$8	6 20,056											
UPPERVALLEY-UV11_Flow_NET	4%				\$ 95	50	\$8	7 30,760											
UPPERVALLEY-UV11A_Flow	6%	27%	20%	10%	\$ 95	58	\$8	9 20,253	0%	\$	- 10%	6 \$ 1,802,517	,						
UPPERVALLEY-UV2_Flow	24%	62%	60%	30%	\$ 95	93	\$9	4 21,737	0%	\$	- 10%	681,093	3 20%	\$ 1,362,185	30%	\$ 2,043,278			
UPPERVALLEY-UV3_Flow_Net	13%	46%	40%	20%	\$ 95	44	\$8	4 29,183	0%	\$	- 10%	\$ 1,225,686	3 20%	\$ 2,451,372					
UPPERVALLEY-UV3A_Flow_NET	16%	51%	50%	30%	\$ 95	40	\$8	2 59,415	0%	\$	- 10%	\$ 1,624,010	20%	\$ 3,248,020	30%	\$ 4,872,030			
UPPERVALLEY-UV3B_Flow	2%				\$ 95	39	\$8	1 28,356											
UPPERVALLEY-UV4_Flow_NET	17%	53%	50%	30%	\$ 95	46	\$8	5 37,156	0%	\$	- 10%	\$ 1,052,753	3 20%	\$ 2,105,507	30%	\$ 3,158,260			
UPPERVALLEY-UV4B_Flow_NET	16%	52%	50%	30%	\$ 95	67	\$9	1 31,433	0%	\$	- 10%	6 \$ 953,468	3 20%	\$ 1,906,935	30%	\$ 2,860,403			
UPPERVALLEY-UV5_Flow	9%	36%	30%	20%	\$ 95	62	\$9	31,160	0%	\$	- 10%	\$ 1,402,200	20%	\$ 2,804,400					
UPPERVALLEY-UV6_Flow	28%	66%	60%	30%	\$ 95	43	\$8	3 14,762	0%	\$	- 10%	6 \$ 408,415	5 20%	\$ 816,831	30%	\$ 1,225,246			
UPPERVALLEY-UV7_Flow	11%	41%	40%	20%	\$ 95	38	\$8	41,707	0%	\$	- 10%	\$ 1,668,280	20%	\$ 3,336,560	PDII	04 Reduction -	- Initic	DDII factor	r × Percentage Complete
UPPERVALLEY-UV9_Flow_NET	6%	26%	20%	10%	\$ 95	47	\$8	5 48,812	0%	\$	- 10%	\$ 4,149,020)		KDII			and the second second second	
VA10A_Flow	5%	22%	20%	10%	\$ 95	66	\$9	1 22,400	0%	\$	- 10%	\$ 2,038,400)			3	= (0.25	57Ln(-0.044)	$45x + 0.0445 + RDII_{Pre}) + 0.988) \times x^{1.055}$
VA11A_Flow	1%				\$ 95	58	\$8	9 29,370											
VA11B_Flow	27%	65%	60%	30%	\$ 95	999	\$ 9	5 4,430	0%	\$	- 10%	6 \$ 140,283	3 20%	\$ 280,567	30%	\$ 420,850			
VA13A_Flow	23%	61%	60%	30%	\$ 95	999	\$ 9	5 9,237	0%	\$	- 10%	6 \$ 292,505	5 20%	\$ 585,010	30%	\$ 877,515			
VA13B_Flow	10%	39%	30%	20%	\$ 95	999	\$ 9	5 25,898	0%	\$	- 10%	\$ 1,230,155	5 20%	\$ 2,460,310					
VA14D_Flow	6%	24%	20%	10%	\$ 95	999	\$ 9	5 5,083	0%	\$	- 10%	6 \$ 482,885	5						
VA16B_Flow	3%				\$ 95	999	\$ 9	5 7,783											
VA16C_Flow	16%	51%	50%	30%	\$ 95	999	\$ 9	5 16,299	0%	\$	- 10%	6 \$ 516,135	5 20%	\$ 1,032,270	30%	\$ 1,548,405			
VA1X1J_Flow	1%				\$ 95	999	\$9	5 17,222											
VA2B_Flow	3%				\$ 95	999	\$9	5 19,875											
VA3A3_Flow	19%	57%	50%	30%	\$ 95	999	\$9	5 36,160	0%	\$	- 10%	\$ 1,145,067	20%	\$ 2,290,133	30%	\$ 3,435,200			
VA3A4_Flow	12%	45%	40%	20%	\$ 95	999	\$9	5 31,379	0%	\$	- 10%	\$ 1,490,503	3 20%	\$ 2,981,005					
VALLEY-SVA1_Flow_NET	20%	57%	50%	30%	\$ 95	56	\$8	9 29,840	0%	\$	- 10%	6 \$ 885,253	3 20%	\$ 1,770,507	30%	\$ 2,655,760			
VALLEY-SVA1A_Flow	9%	37%	30%	20%	\$ 95	71	\$ 9	2 31,260	0%	\$	- 10%	\$ 1,437,960	20%	\$ 2,875,920					
VALLEY-SVA1B_Flow	5%	24%	20%	10%	\$ 95	80	\$ 9	3 51,241	0%	\$	- 10%	\$ 4,765,413	3						
VALLEY-SVA2_Flow_NET	9%	38%	30%	20%	\$ 95	74	\$ 9	2 46,936	0%	\$	- 10%	\$ 2,159,056	6 20%	\$ 4,318,112					
VALLEY-SVA2A_Flow_NET	2%				\$ 95	84	\$ 9	3 82,378											
VALLEY-VA10_Flow_Net	7%	30%	30%	10%	\$ 95	999	\$9	5 17,908	0%	\$	- 10%	\$ 1,701,260)						
VALLEY-VA11_Flow_Net	22%	60%	50%	30%	\$ 95	999	\$ 9	5 18,538	0%	\$	- 10%	6 \$ 587,037	20%	\$ 1,174,073	30%	\$ 1,761,110			
VALLEY-VA12_Flow	13%	47%	40%	20%	\$ 95	54	\$8	66,390	0%	\$	- 10%	\$ 2,921,160	20%	\$ 5,842,320					
VALLEY-VA13_Flow_NET	12%	44%	40%	20%	\$ 95	999	\$ 9	5 18,196	0%	\$	- 10%	6 \$ 864,310	20%	\$ 1,728,620					
VALLEY-VA14_Flow_NET	32%	70%	60%	40%	\$ 95	55	\$8	9 7,561	0%	\$	- 10%	6 \$ 168,232	2 20%	\$ 336,465	30%	\$ 504,697	40%	\$ 672,929	
VALLEY-VA14A_Flow	15%	49%	40%	20%	\$ 95	97	\$ 9	4 12,806	0%	\$	- 10%	6 \$ 601,882	20%	\$ 1,203,764					
VALLEY-VA14B_Flow	13%	46%	40%	20%	\$ 95	56	\$8	9 20,810	0%	\$	- 10%	6 \$ 926,045	5 20%	\$ 1,852,090					
VALLEY-VA14C_Flow_NET	8%	35%	30%	20%	\$ 95	70	\$ 9	2 14,781	0%	\$	- 10%	6 \$ 679,926	6 20%	\$ 1,359,852					
VALLEY-VA15_Flow_NET	14%	48%	40%	20%	\$ 95	89	\$ 9	4 32,307	0%	\$	- 10%	\$ 1,518,429	20%	\$ 3,036,858					
VALLEY-VA15A_Flow	9%	36%	30%	20%	\$ 95	90	\$9	4 18,459	0%	\$	- 10%	6 \$ 867,573	3 20%	\$ 1,735,146					

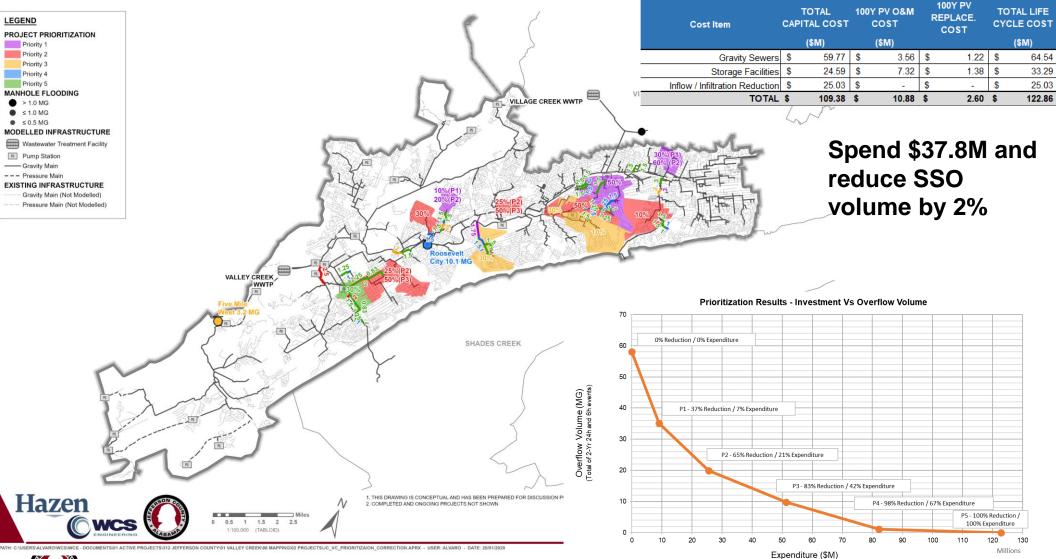

Optimization Alternatives Considered (Valley Creek)

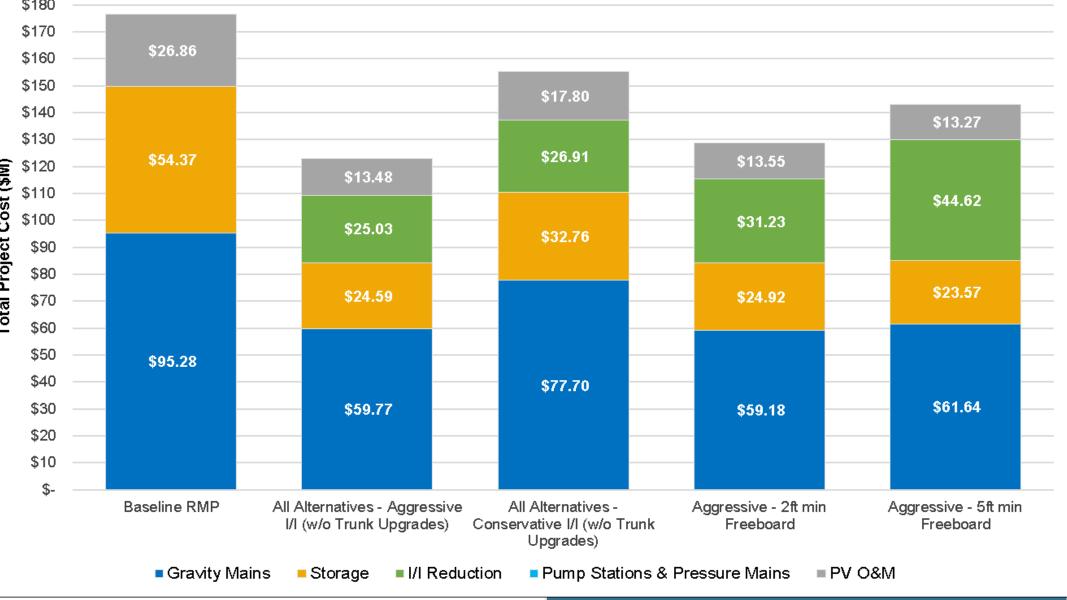




ATH: C:\USERS\ALVAR\WCS\WCS - DOCUMENTS\01 ACTIVE PROJECTS\312 JEFFERSON COUNTY\01 VALLEY CREEK\06 MAPPING\02 PROJECTS\JC_VC_RMP.APRX - USER: ALVAR - DATE: 11/12/2019

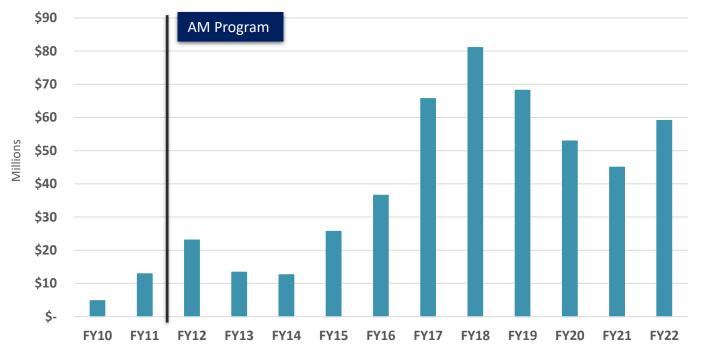




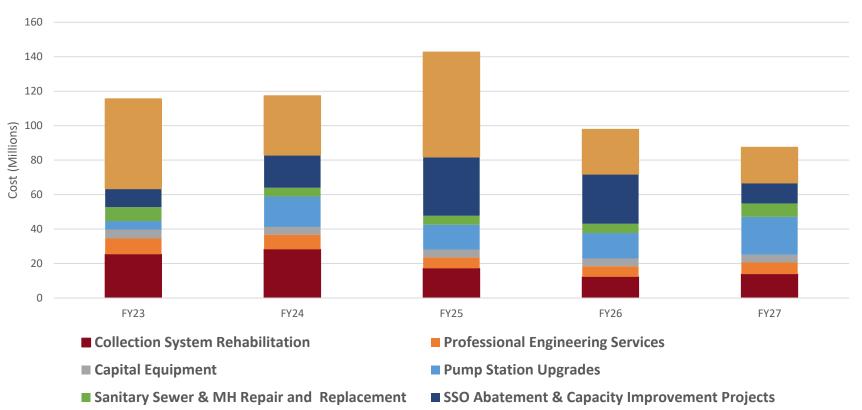


Remedial Measures Prioritization

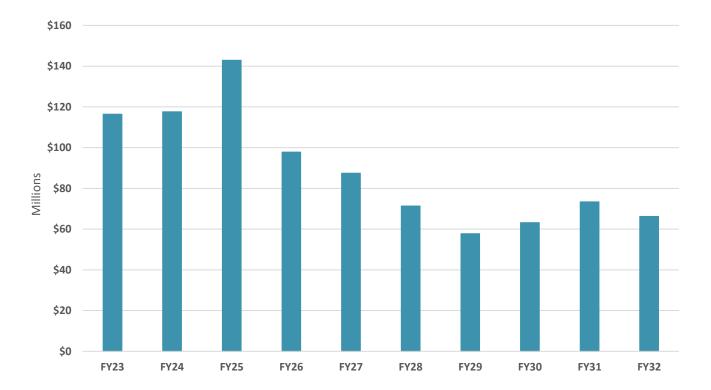
- Following initial optimization and prioritization, Remedial Measures
 Projects are further prioritized based on:
 - Greater confidence
 - Higher volume
 - # of locations
 - \$/gallon
 - Future condition
- The comprehensive system-wide prioritization plan will be updated as models and optimization are completed


Project Category	Description	Priority Score
A	Model-Predicted SSO(s) and Recurring Reported Capacity-Related SSO(s)	5
В	Model-Predicted SSO(s) and Reported Capacity- Related SSO(s) (< 4 occurrences)	4
С	Model-Predicted SSO(s), No Reported Capacity- Related SSOs, but Flow Monitor in Vicinity Indicates Hydraulic Issues exist	4
D	Model-Predicted SSO(s), No Reported Capacity- Related Overflows and Flow Monitor in Vicinity Does not Indicate Hydraulic Issues Exist	2
E	No Model-Predicted SSO, Reported Capacity- Related SSO(s)	2
F	Model-Predicted SSO(s) in Future Flow Condition Only	1

Projected CIP and Cash Flow


Annual Project Expenditures

FY10 – FY22 Project Expenditures


Five Year Capital Improvement Plan

WRF Projects

*As of Jan 2023

Ten Year Capital Improvement Plan

Questions

Stephen King, P.E., BCEE – Hazen and Sawyer sking@hazenandsawyer.com

