

Using the New England Retrofit Manual to Support SCM Selection and Design for MS4 Compliance

Presented by Kelly Siry Water Resource Engineer, VHB

January 25, 2023

Agenda

- New England Retrofit Manual Overview
- EPA Performance Curves
- DCR's application of the manual's guidance
 - MS4 TMDL requirements
 - Horgan Skating Rink
 - Retrofit Design Approach

New England Stormwater Retrofit Manual

- Focused on retrofit stormwater control measures (SCMs)
 - Not subject to regulatory requirements
- Selection of the optimal stormwater control measures (SCMs) for a specific site
- Credit pollutant and runoff volume reductions using the EPA Performance Curves

<section-header><section-header><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><image><text><section-header>

Retrofit: the addition of stormwater controls on a currently developed site

SCM: Stormwater Control Measure

July 2022

Stormwater Retrofit Manual (snepnetwork.org)

Goals of New England Stormwater Retrofit Manual

- Improve water quality by retrofit SCMs
- Small treatment is better than no treatment
 - Emphasize SCM Performance curves
- Flexibility for SCMs in constrained sites

EPA Performance Curves

Using the Manual to Design SCMs and Support MS4 Compliance: DCR Site Example

DCR MS4 Regulated Areas

MS4 Regulations & Phosphorus Control Plans

- Appendix F, Section A.II Lake and Pond Phosphorus TMDL Requirements
 - Calculate pollutant loading from DCR facilities
 - Develop Plan to implement SCMs to reduce pollutant load

Watershed	Required TP Percent Reduction	Required TP Reduction
Auburn Pond	24%	0.9 lb/yr
Leesville Pond	31%	1.2 lb/yr

Phosphorus Control Plan -Permit Year 4

(Charles River/ Lakes and Ponds)

For compliance with the National Pollutant Discharge Elimination System General Permit for Stormwater Discharges from Small Municipal Separate Storm Sewer Systems in Massachusetts

DCR: Horgan Skating Arena

Retrofit Manual: Planned Approach

- Design retrofit SCMs to met
 PCP required Phosphorus
 reduction
- Not subject to new/ redevelopment regulations
- Not subject to Wetland
 Protection Act (WPA)

SCM Design Alternatives

Goal: provide a 31% reduction in Total Phosphorous

SCM Alternatives Considered:

- Impervious Cover (IC) Disconnection
 - Ruled out due to local bylaws and presence of sport fields
- Porous pavement
- Infiltration basin
- Leaching basins
- Infiltration basin and leaching basin combination

Uncompacted subgrade

Overflow structure

Phosphorus SCM Performance Curves

--- Pavement Removal

Constraints and Considerations

Get water quality credit from the space we have!

- Not planning to redo pavement
- Surrounded by town-owned sports fields
 - Steep slopes down to fields
- Utilities near the roadway
- Maintenance efforts
 - DCR typical SCM maintenance

Porous Pavement

- 13% TP reduction
- 0.8 lb/yr TP reduction
- Cannot sand on porous pavement
- Requires pressure washing
- Doesn't meet target but could make the area larger to meet

Leaching CBs

- 18% TP Reduction
- 1.1 lb/yr TP Reduction
- Doesn't meet the reduction target

Infiltration Basin

- 26% TP Reduction
- 1.6 lb/yr TP Reduction

 Meets target, only treats portion of facility

Infiltration Basin + Leaching CBs

- 38% TP Reduction
- 2.4 lb/yr TP Reduction
- Exceeds target and treats almost all of facility

Requirements and Treatment Summary

Watershed	Required TP Percent Reduction	Required TP Reduction
Auburn Pond	24%	0.9 lb/yr
Leeseville Pond	31%	1.2 lb/yr

Alternative	Total TP Removal (lb/yr)
Infiltration Basin + Leaching Basins	2.4
Infiltration Basin Only	1.6
Porous Pavement Only*	0.8
Leaching Basins Only	1.1

*Cannot sand porous pavement, only represents portion of the parking lot

SCM Summary and Next Steps

- Treating the full site with leaching basins and an infiltration basin
- Take conceptual SCM design to full design
 - Survey to confirm to utilities and grades work
 - Refine basin volume and pollutant crediting
- Build the SCMs
- Focus on other PCP watershed retrofits

Questions?

Kelly Siry | ksiry@vhb.com | 617.607.6238

