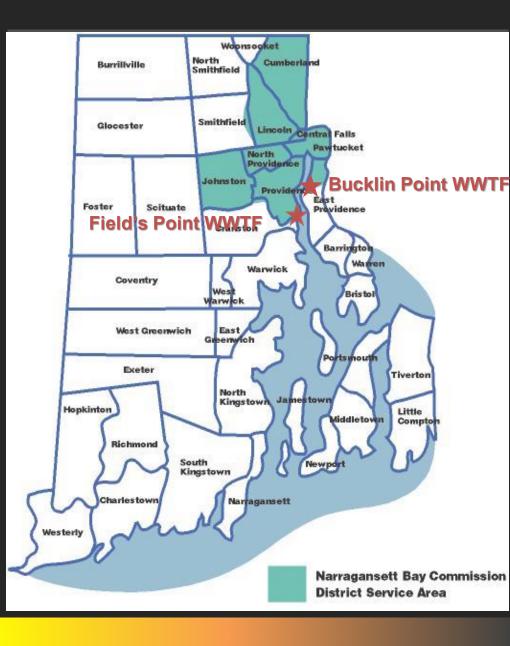


Application of Mixing Zone Modeling in Decision Making for CSO Tunnel Construction Water Discharge

Yuan Fang, Ph.D., PE,

NEWEA 2023 January 25, 2023



Narragansett Bay Commission (NBC), Rhode Island

- Two WWTFs
- 110 Miles of Interceptors
- 64 CSO Outfalls
- 3-mile CSO Tunnel
- 6 Pump Stations
- 10 Communities

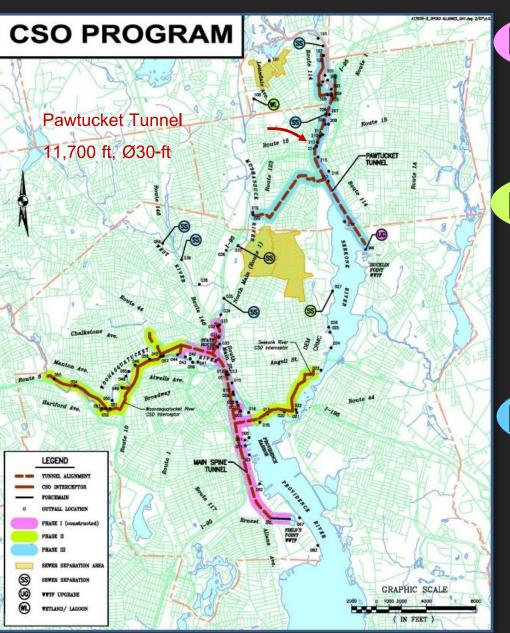
(70,000 Customers)

NBC CSO Program

1992: Consent Agreement with RIDEM for CSO Controls

1996-1998: Program Reevaluation with Stakeholders Group Input

- 1994 EPA CSO Policy Change Provide more flexibility
- Cost (capital and rate increase)
- Technical Concerns
- 1998: Defined a three-phase CSO Control Program


Program Goals:

- 98% reduction annual CSO volume
- 80% reduction in shellfish bed closures
- < 4 overflows per year

NBC CSO Program

Phase I: 2001-2008

Providence Tunnel (63 MG, Ø26-ft, 3-mile)

Addresses 40% CSO Volume

Phase II: 2011-2015

\$197M

\$360M

CSO Interceptors

Sewer Separation

Storage/Wetlands Facility

Phase III: 2021-2041 \$1B

Pawtucket Tunnel (58.5 MG, Ø30-ft, 2.2-mile)

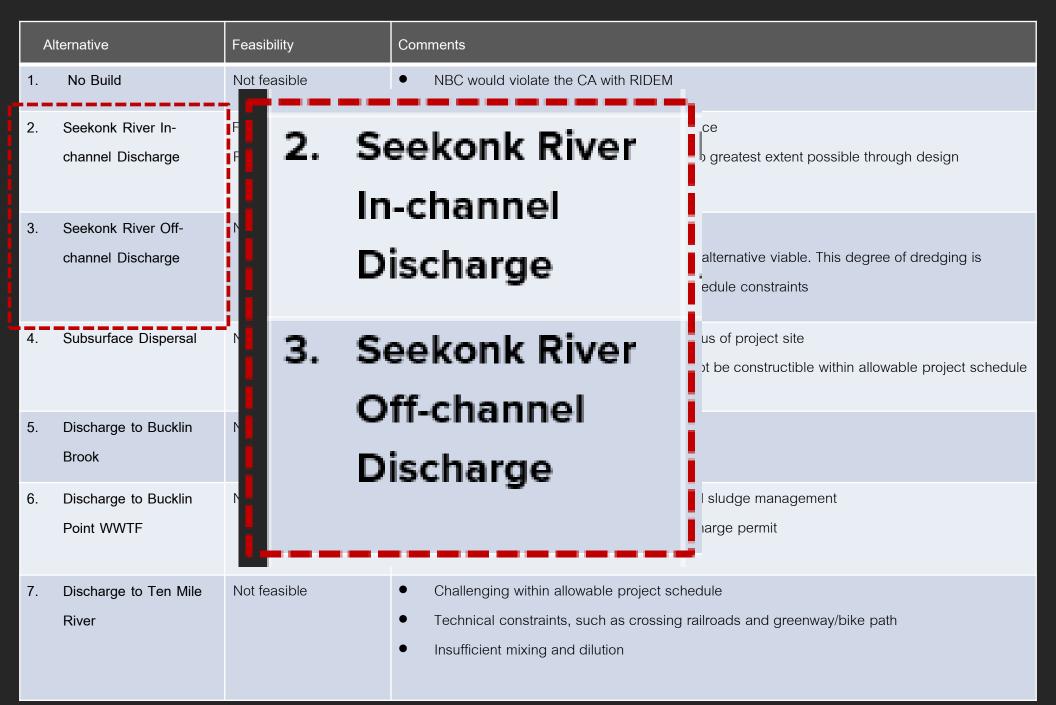
Bucklin Points WWTF Upgrades

Targeted Sewer Separation

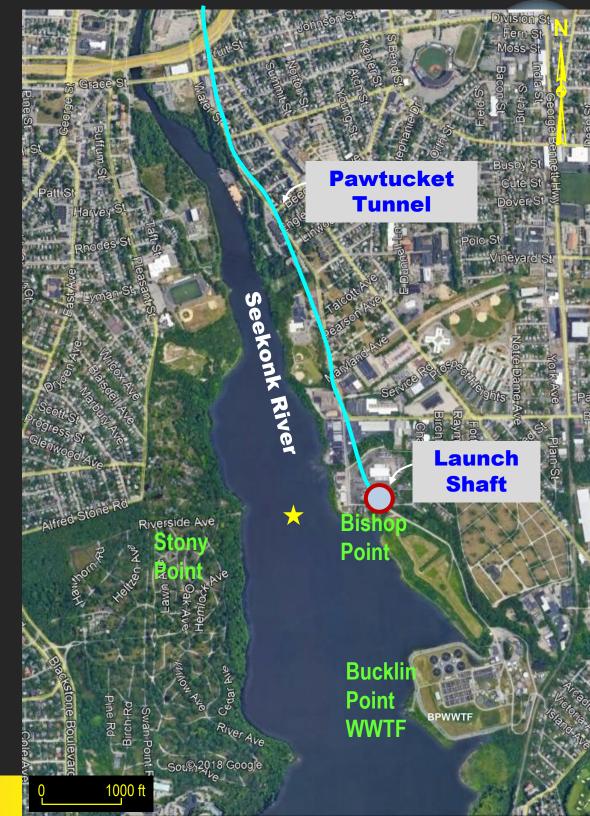
Green Stormwater Infrastructure

What do we do

with the construction water during


tunnel mining?

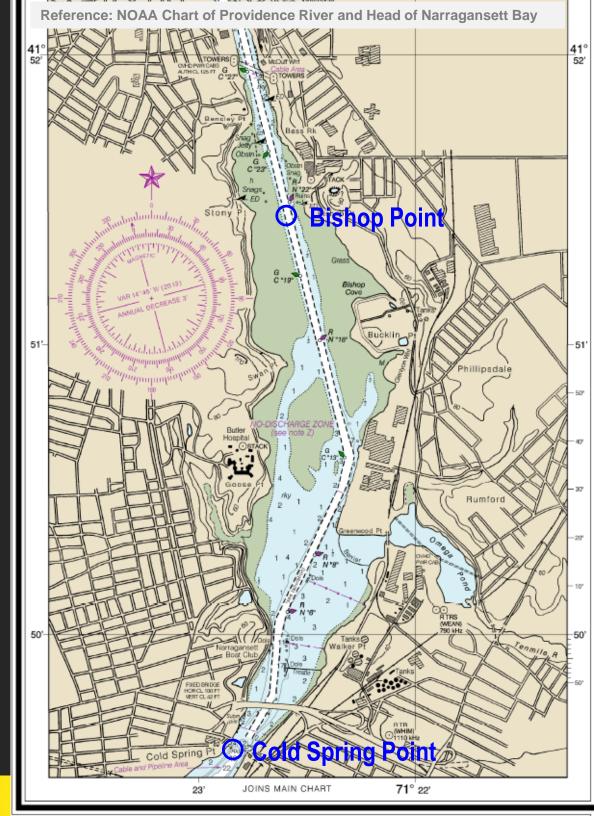
Discharge Alternative & Summary



Seekonk River Discharge

 The Seekonk River has been identified as a Class SB receiving water by the Rhode Island Department of Environmental Management (RIDEM)

Permit Requirements


- Permits from RIDEM
- Permit from Rhode Island Coastal Resources Management Council (CRMC)
- Authorization from US Army Corps of Engineers (USACE)

Seekonk River Navigation

Channel

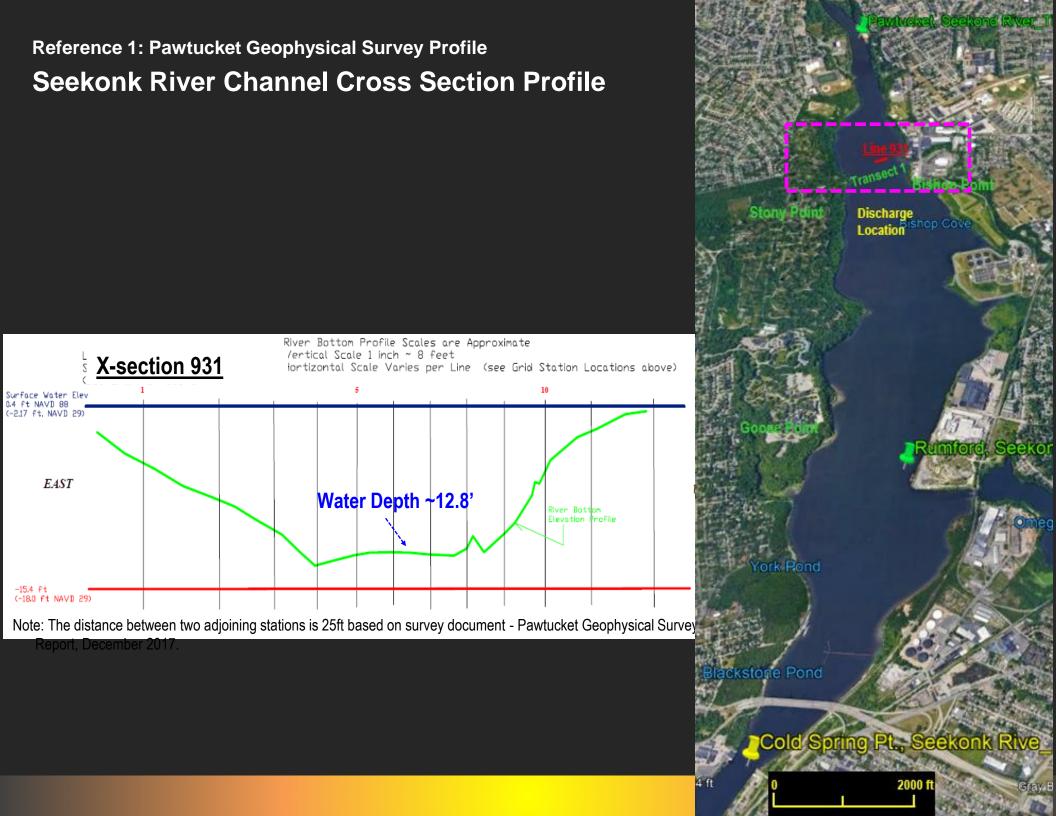
- 3.4 mile-long
- 16 feet deep
- 100-230 feet wide (narrows to 60 feet upstream to the Division Street Bridge)

CORMIX Model

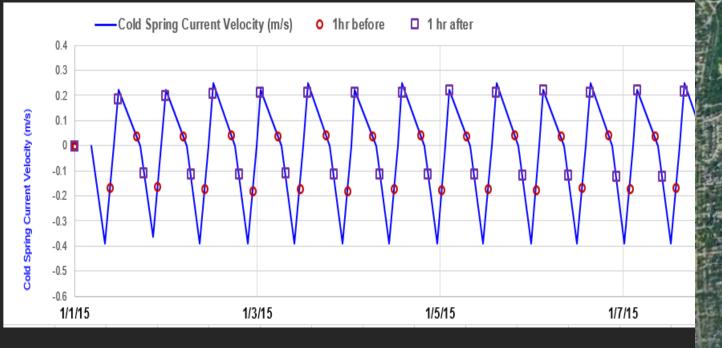
- CORMIX is a USEPA-supported mixing zone model
- Decision support system for environmental impact assessment of mixing zones resulting from continuous point source discharges.
- The system emphasizes the role of boundary interaction to predict steady-state mixing behavior and plume geometry.
- The CORMIX methodology contains systems to model single-port, multiport diffuser discharges and surface discharge sources.

CORMIX model was used in this study to simulate mixing zone in the Seekonk River for estimating dilution factors.

CORMIX Input 1. Project Information


G CORMIX v11.0.1.0	_	o x
Project Pages Pre-Processing Tools Run Output Data Reports Post-Processing/Advanced Help		
Load Clear Save As Print Si-Units CorHyd CorSpy	User Manua	CorHelp
Project Effluent Ambient Discharge Mixing Zone Output Project	Proce ct Legend	essing
Project Legend/Identification		
Project File Name: C:_YF\Project\RI_NBC Tunnel Discharge Pretreatment\CORMIX\CORMIX Model\Model 20200203\800_SinglePort_1HRbfHWS.cmx	L	.oad
Design Case: 1 hr before HWS Site Name: Seekonk River (Tidal)		
Prepared By: Yuan Fang Date: 02	/03/20 1	Today
Project Notes:		
800 gpm, Single Port discharge		-
		-
C:\ YF\Project\RI NBC Tunnel Discharge Pretreatment\CORMIX\CORMIX ModeModel 20200203\800 SinglePort 1HRbfHWS.cmx ; 1 hr before HWS		

CORMIX Input 2. Effluent Properties

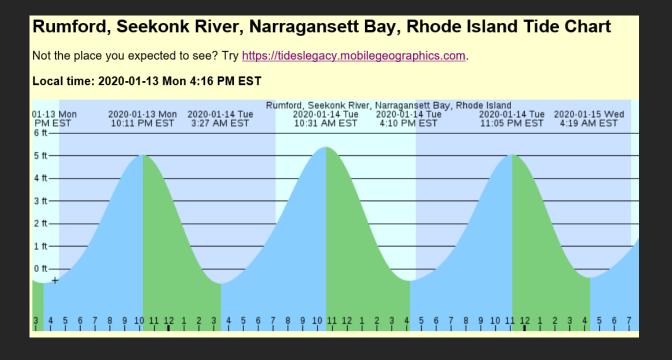

Project Pages Pre-Processing Tools Run Output Data Reports Post-Processing/Advanced Help
Load Clear Save Save As Print SI-Units CorHyd CorSpy
Project Effluent Ambient Discharge Mixing Zone Output Processing Effluent Page + +
Effluent Characterization/Pollutant Type Pollutant Type
Conservative Pollutant Non-Conservative Pollutant Heated Discharge Brine Discharge
Flow Evaluated 400 gpm The pollutant does NOT undergo chemical/biological decay/growth processes. 1200 gpm 2400 gpm
Discharge Concentration (f ess) : 100 🔽 %
Effluent Flow Flow Rate Velocity Flow Rate: 800 GPM (US) Flow Rate: 800 GPM (US) Fresh Non-Fresh Density Temperature Temperature: 51 deg. F

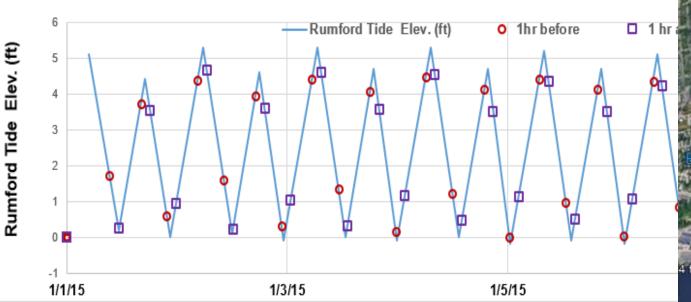
CORMIX Input 3. Ambient Condition

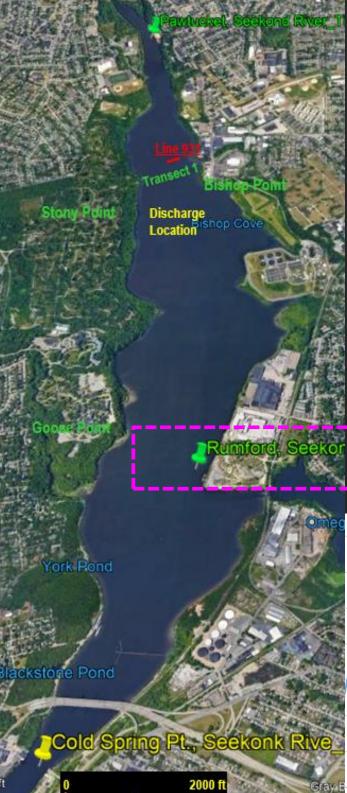
CORMIX v11.0.1.0 - □ ×
Project Pages Pre-Processing Tools Run Output Data Reports Post-Processing/Advanced Help
Load Clear Save As Print Side Correct
Project Effluent Ambient Discharge Mixing Zone Output Processing
Ambient Page + +
Average Depth: 11.17
Depth at Discharge: 11.17
Wind Speed: 2.1
SimulationsSlight Meander
Steady Unsteady
Tidal Velocity: 0.039 🔽 m/s
Period (hr): 12.4 At time (hr): 1 BEFORE slack. Ing Darcy 1hr after LWS Max Veloc: 0.49 m/s C At slack - Delta Time (hr): Manning's n: 0.028
Max Veloc: 0.49 _ m/s O At stack · Delta Time (hr): AFTER slack. Manning's n: 0.028 _ 1hr before HWS
2 Ambient Density Data
· · · · · · · · · · · ·
Fresh Water Non-Fresh Water
Uniform Stratified Type B Type C
▼ Density (kg/m3)
Linear Density Profile at Surface: 1006.6 Compute at Bottom: 1017.3 Compute
C:_YF\Project\RI_NBC Tunnel Discharge Pretreatment\CORMIX\CORMIX Mode\Model 20200203\800_SinglePort_1HRbfHWS.cmx ; 1 hr before HWS

Reference 2: Narragansett Bay Tidal Current Cold Spring Pt., 2015 Tidal Current Predictions

Discharge Location

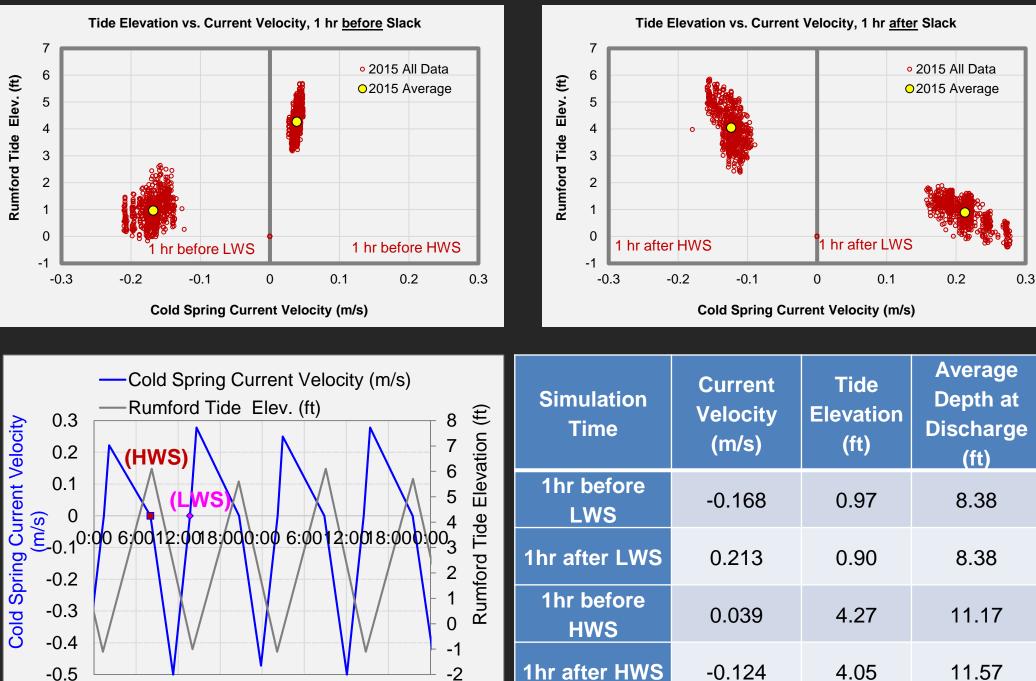

Cold Spring PL, Seekonk Rive

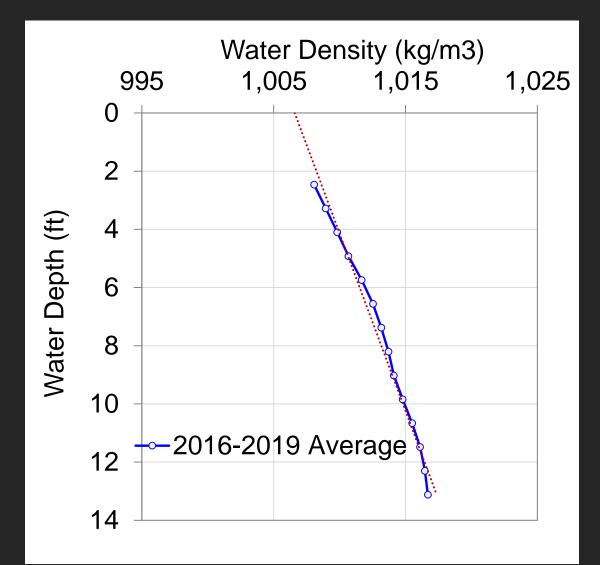

4 ft


kstone Pond

2000 f

Reference 3: Narragansett Bay Tidal Chart Rumford, Seekonk River Tidal Chart, 2015

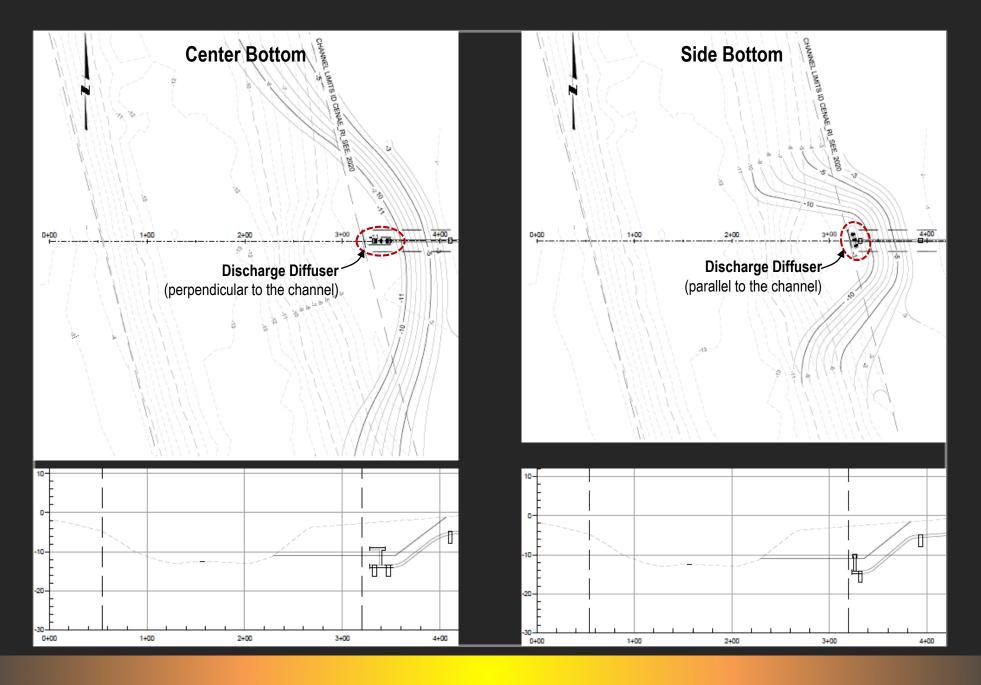




Reference 2 & 3: Narragansett Bay Tidal Data Analysis

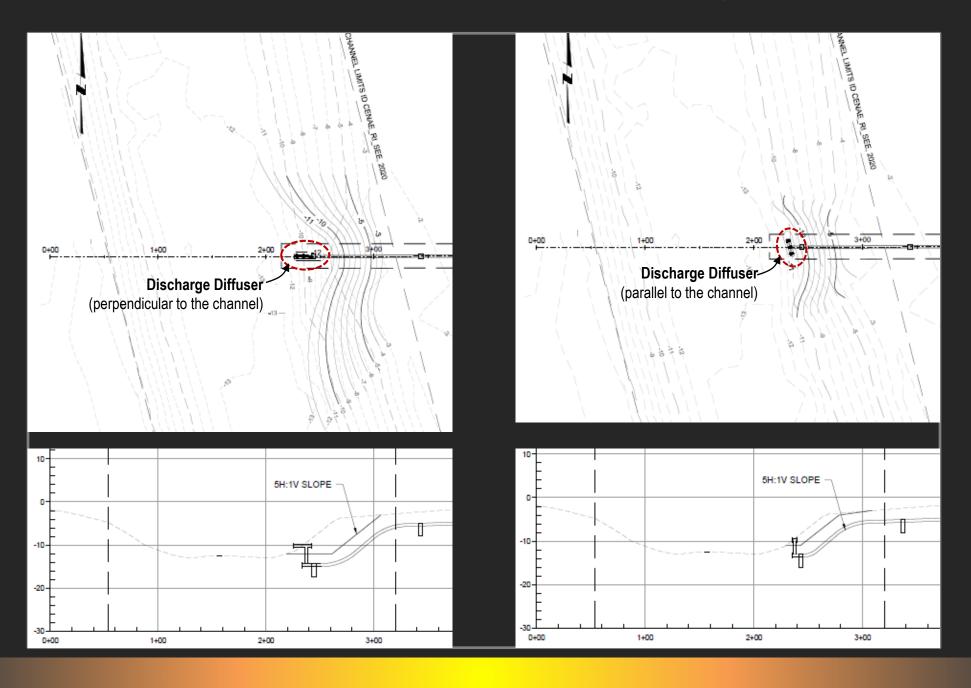
Tide Elevation vs. Current Velocity at Four Tidal Intervals

Reference 6: NBC Water Quality Monitoring Water Column Profile Data 2016-2019

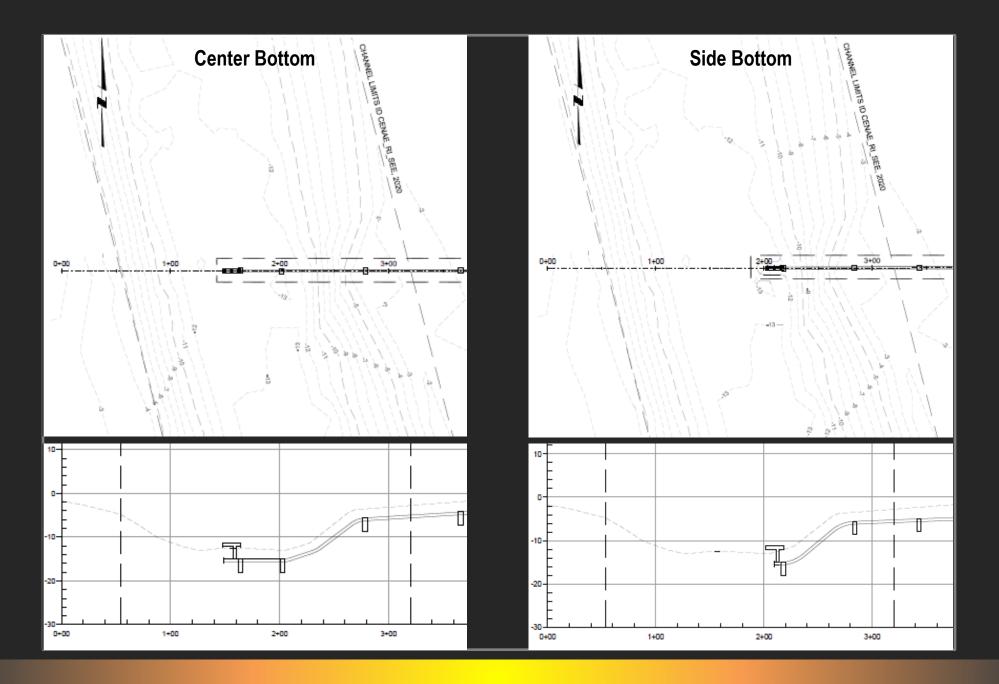


CORMIX Input 4. Discharge Properties

CORMIX v11.0.1.0 Project Pages Pre-Processing Tools Run Output Data Reports	Deet Decession (Advanced - Usin	I	X
Project Pages Pre-Processing Tools Kun Output Data Reports		in 19 19 19 19 19 19 19 19 19 19 19 19 19	
Load Clear Save Save As Print SI-Units Corrigo	CorSpy & Run FC Tree		CorSens Manual CorHelp
Project Effluent Ambient	Simulations	ixing Zone Output	Processing Discharge Page
CORMIX1 CORMIX2 CORMIX3 Single Port Multiport Surface	Discharge Geometry Data Single Port		
	Single Multiport		
	O Perpendi	icular	
	O Parallel		
Nearest bank is on the: 🗾 right	Vert	tical Angle THETA: 15	degrees
Distance to nearest bank: 50 🗾 🛨 ft	Simu	ulations	degrees
Plan View Farsh	Sel	le n ^{o f} Channel ge Configu	ration
		Off Channel	
→ Ī	Su	ubmerged Offshore Discharge Configuration	ation
- v /	Port Ht. 4	Above Channel Btm: 2.5	▼ ft
ws i /B		O Outside of I	imit z
U_a γ γ	1	∇	1
→ Lp/ /)°)	† i t	-	
- 1 B ×	YB2 H	`	DISTB
DISTB		y Θ	hot hot
TYB1			
C:_YF\Project\RL_NBC Tunnel Discharge Pretreatment\CORMIX\CORMIX Mod	Model 20200203\800_SinglePort_1HRbfF	HWS.cmx ; 1 hr before HWS	

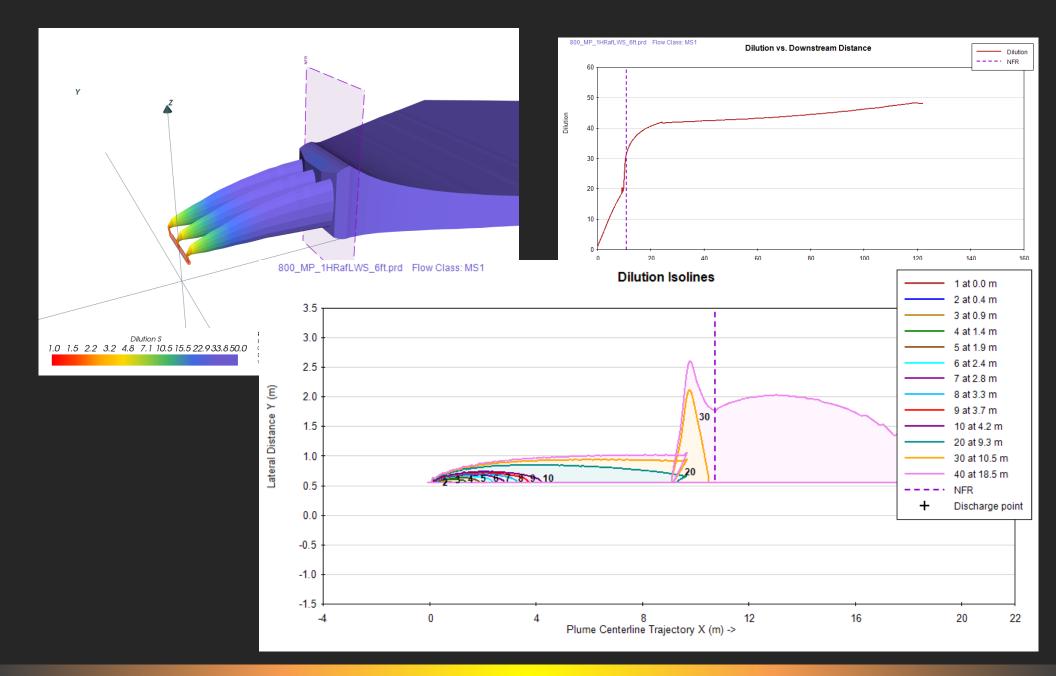

Tunnel Construction Water Discharge Options Diffuser located outside of the

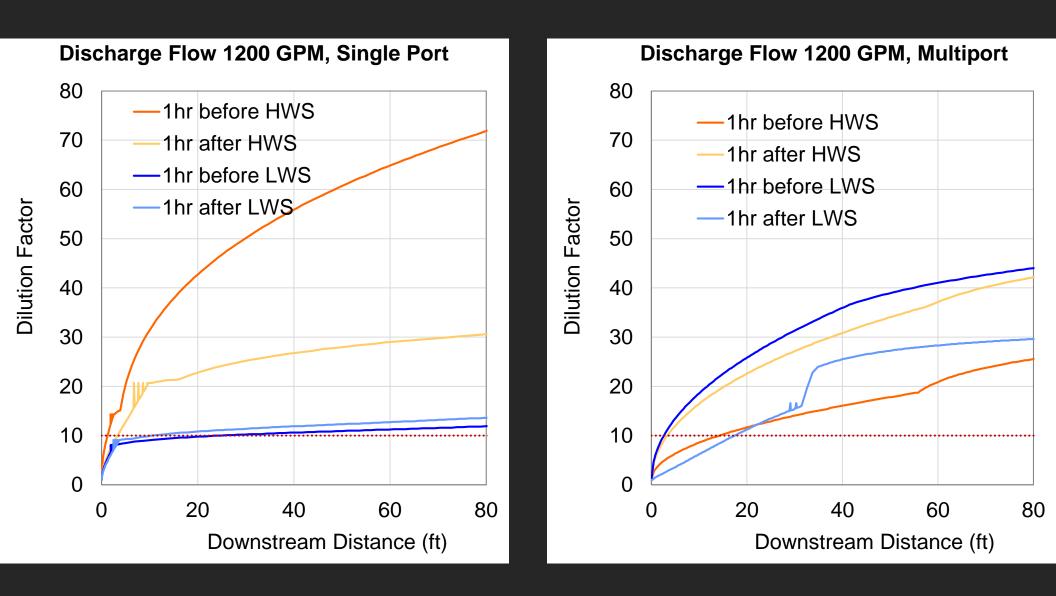
Federal Channel Limits



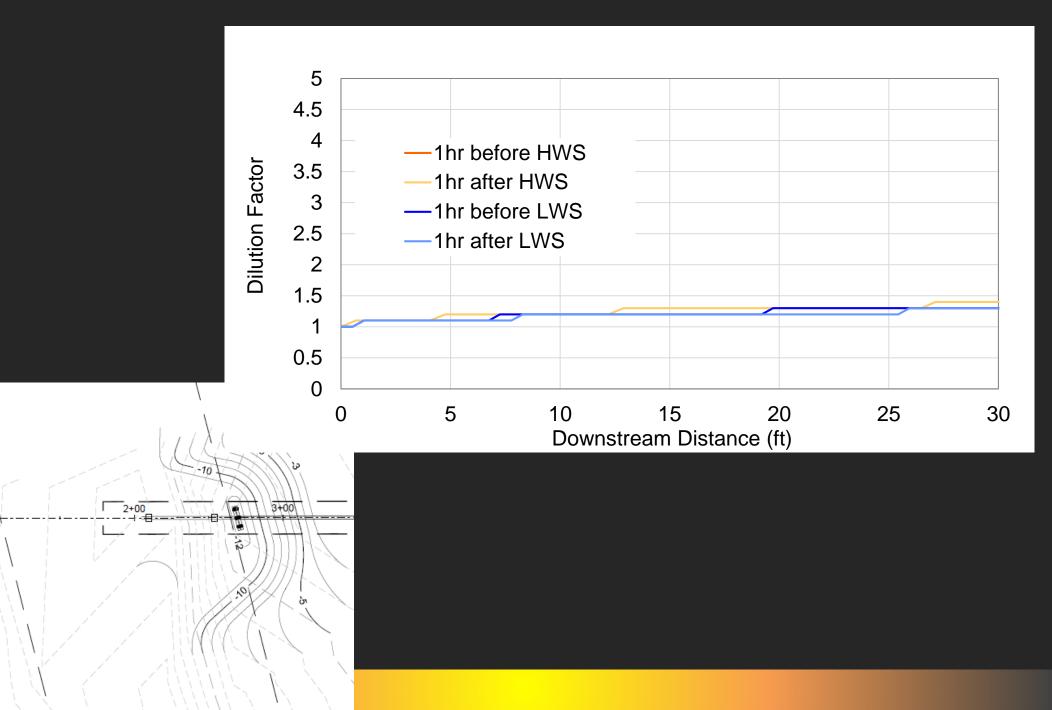
Tunnel Construction Water Discharge Options

Inside of the Federal Channel Limits but outside of the deep channel

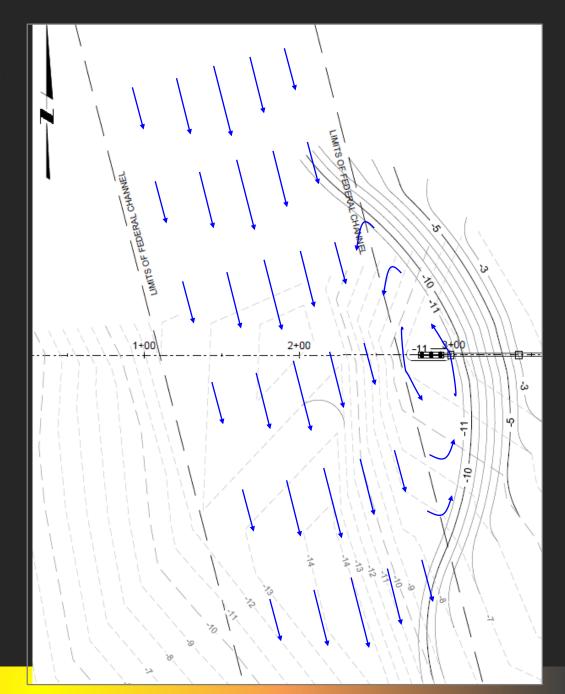

Tunnel Construction Water Discharge Options In Channel Discharge


CORMIX Model Scenario Examples

Modeling Scenario	Discharge Flow (GPM)	Simulation Time	Single / Multiple Port
400_SinglePort_1HRbfLWS	400	1hr before LWS	Single Port
400_SinglePort_1HRafLWS	400	1hr after LWS	
400_SinglePort_1HRbfHWS	400	1hr before HWS	
400_SinglePort_1HRafHWS	400	1hr after HWS	
800_SinglePort_1HRbfLWS	800	1hr before LWS	Single Port
800_SinglePort_1HRafLWS	800	1hr after LWS	
800_SinglePort_1HRbfHWS	800	1hr before HWS	
800_SinglePort_1HRafHWS	800	1hr after HWS	
1200_SinglePort_1HRbfLWS	1200	1hr before LWS	Single Port
1200_SinglePort_1HRafLWS	1200	1hr after LWS	
1200_SinglePort_1HRbfHWS	1200	1hr before HWS	
1200_SinglePort_1HRafHWS	1200	1hr after HWS	
1200_MultiPort_1HRbfLWS	1200	1hr before LWS	Multiple Port
1200_MultiPort_1HRafLWS	1200	1hr after LWS	
1200_MultiPort_1HRbfHWS	1200	1hr before HWS	
1200_MultiPort_1HRafHWS	1200	1hr after HWS	
2400_MultiPort_1HRbfLWS	2400	1hr before LWS	Multiple Port
2400_MultiPort_1HRafLWS	2400	1hr after LWS	
2400_MultiPort_1HRbfHWS	2400	1hr before HWS	
2400_MultiPort_1HRafHWS	2400	1hr after HWS	

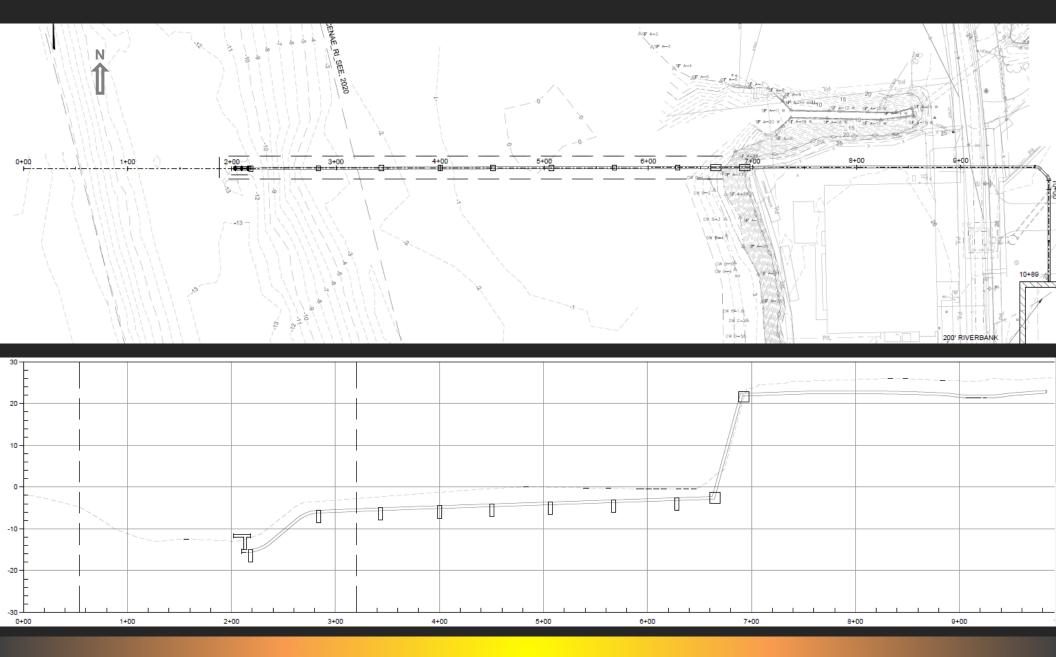

800gpm, 1HR after LWS, multiport

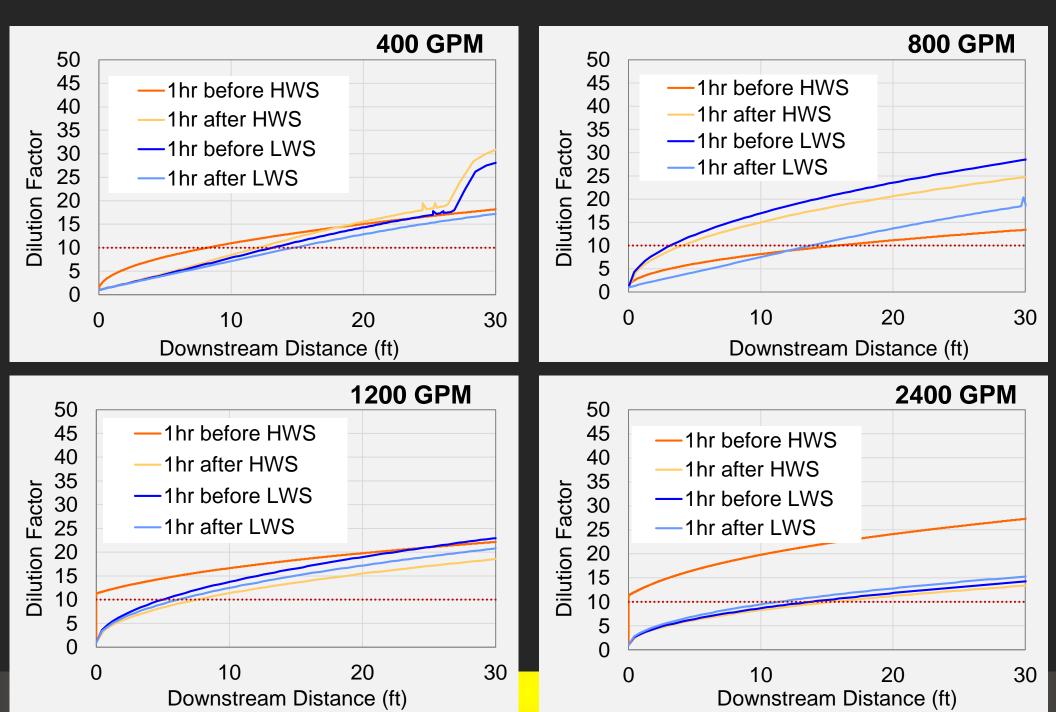
1200gpm, Single Port vs. Multiport



2400gpm, Multiport Diffuser Parallel to Flow

Multiport Diffuser off Channel Limit

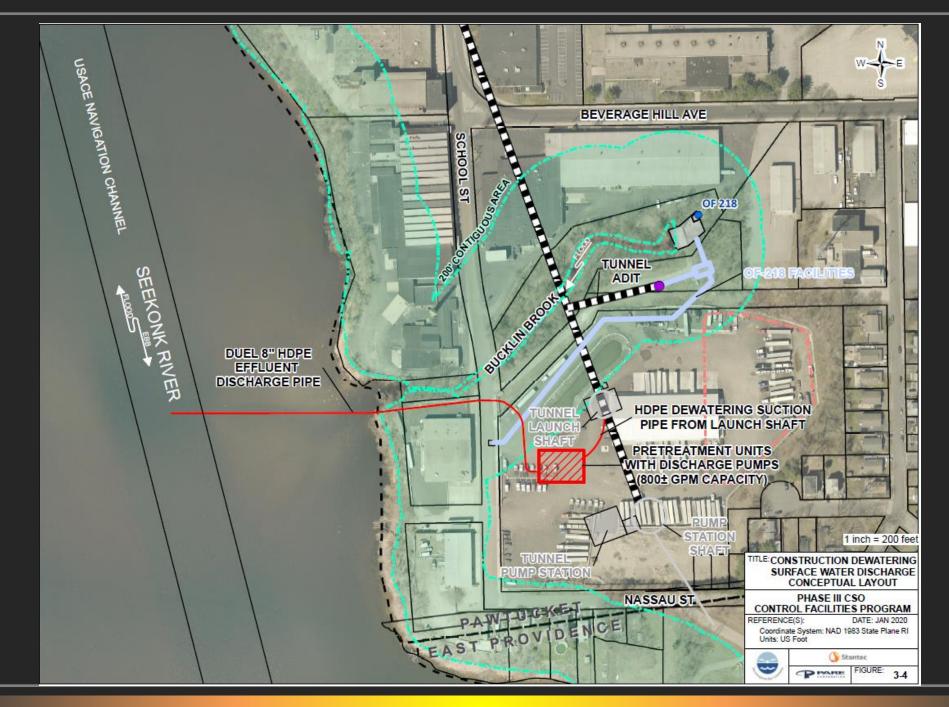

- Depending on bank curvature, surface roughness and flow regime, flow detachment and eddy may form within the dredged section outside of the channel
- Discharge in the curved section will not have sufficient ambient flow and velocity to for effective mixing
- In long term, the pollutant from the discharge will accumulate in the curved section to high concentration levels


Pawtucket Tunnel Construction Water Effluent Pipe

and Discharge Diffuser

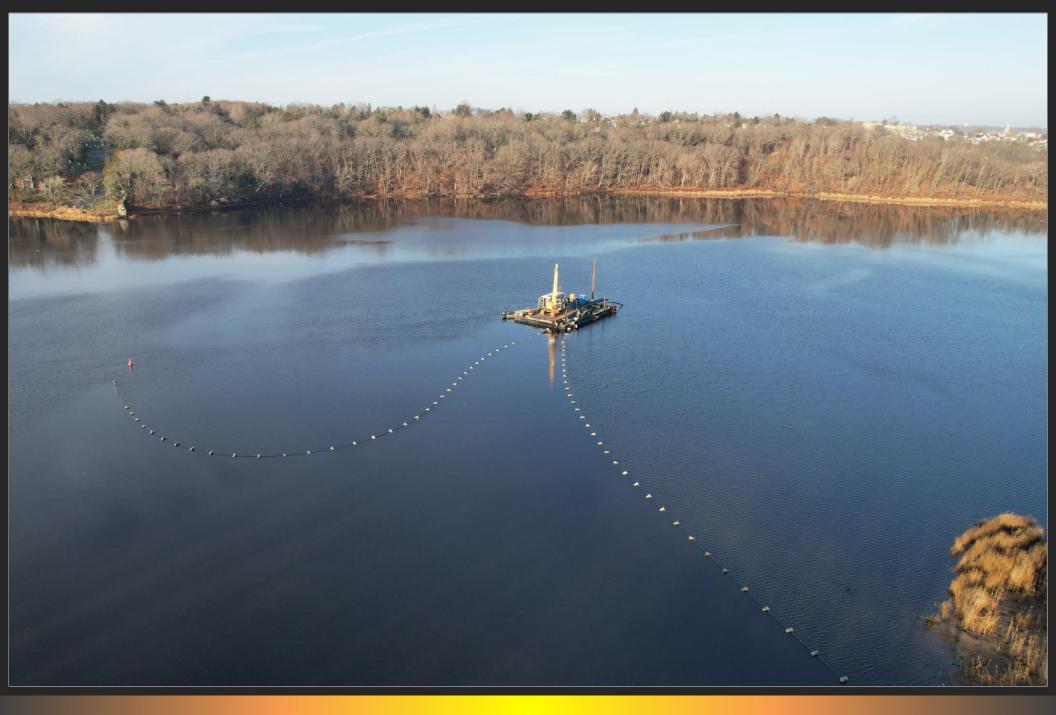
Proposed Plan and Profile View

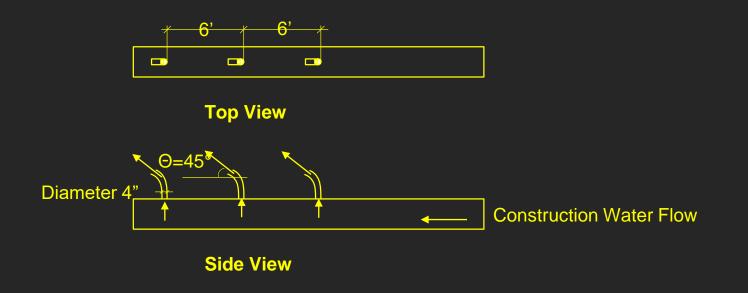
Multiport Diffuser, three 4" ports @6ft apart

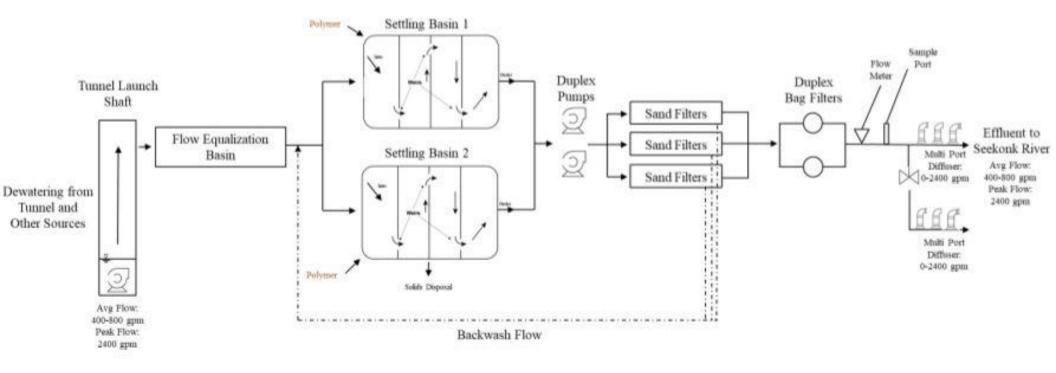

Take-away Message

- CORMIX Modeling is a useful tool to simulate mixing zone around the discharge to estimate dilution factors
- Dredging and expanding river channel for an off-channel discharge would not provide sufficient ambient flow to mix and dilute the discharged stream.
- Positioning multiport diffuser parallel to the channel will reduce intrusion to the channel, however, it would provide insufficient dilution.
- Recommended Alternative: multiport diffuser in the channel perpendicular to the flow. Achieve a dilution factor of 10 within 20 feet downstream of the discharging point.

Happy New Year of the Rabbit!



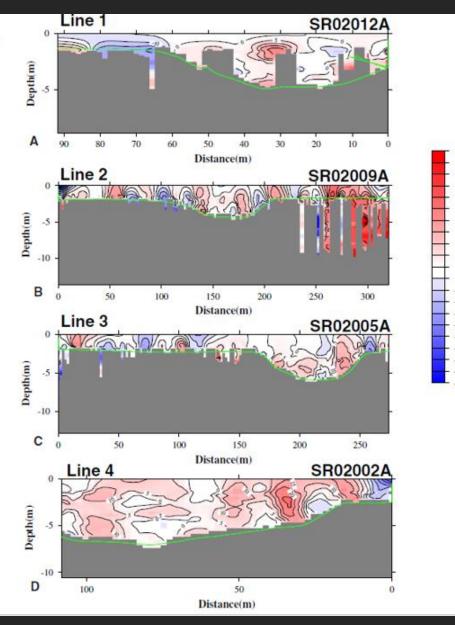


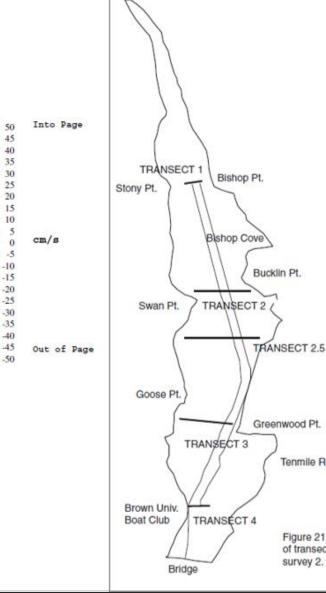


Multiport Diffuser Simulated in the Model

- Port Number: 3
- -Port Diameter: 4 inch
- -Distance between continuous port: minimum 6 ft
- -Orientation of Nozzles
 - Vertical: 45 degrees
 - Horizontal: parallel to the diffuser (length)

CALCULATION								
FACILITY NAME:	NBC Paw	tucket Tunr	nel Constructio	Dewatering (DF=1	0) RIPDES F	PERMIT #:		
		DAILY MAX	MONTHLY AVE				DAILY MAX	MONTHLY AVE
CHEMICAL NAME	CAS#	LIMIT	LIMIT	CHEM	IICAL NAME	CAS#	LIMIT	LIMIT
		(ug/L)	(ug/L)				(ug/L)	(ug/L)
PRIORITY POLLUTANTS:				TETRACHLORO	DETHYLENE	127184	No Criteria	264.00
TOXIC METALS AND CYANIDE				TOLUENE		108883	No Criteria	120000.00
ANTIMONY	7440360	No Criteria	5120.00	1,2TRANSDICH	LOROETHYLENE	156605	No Criteria	80000.00
ARSENIC, TOTAL	7440382	611.64	3.24	1,1,1TRICHLOR	OETHANE	71556	No Criteria	No Criteria
ASBESTOS	1332214	No Criteria	No Criteria	1,1,2TRICHLOR	OETHANE	79005	No Criteria	1280.00
BERYLLIUM	7440417	No Criteria	No Criteria	TRICHLOROET	HYLENE	79016	No Criteria	2400.00
CADMIUM, TOTAL	7440439	377.82	82.86	VINYL CHLORID)E	75014	No Criteria	19.20
CHROMIUM III, TOTAL	16065831	No Criteria	No Criteria	ACID ORGANIC	COMPOUNDS			
CHROMIUM VI, TOTAL	18540299	9967.32	450.71	2CHLOROPHEN	IOL	95578	No Criteria	1200.00
COPPER, TOTAL	7440508	59.31	36.47	2,4DICHLOROP	HENOL	120832	No Criteria	2320.00
CYANIDE	57125	8.00	8.00	2,4DIMETHYLP	HENOL	105679	No Criteria	6800.00
LEAD, TOTAL	7439921	13690.50	523.11	4,6DINITRO2ME	THYL PHENOL	534521	No Criteria	2240.00
MERCURY, TOTAL	7439976	19.05	1.34	2,4DINITROPHE	NOL	51285	No Criteria	42400.00
NICKEL, TOTAL	7440020	698.76	73.42	4NITROPHENOI	L	88755	No Criteria	No Criteria
SELENIUM, TOTAL	7782492	2614.60	639.65	PENTACHLORO	PHENOL	87865	104.00	63.20
SILVER, TOTAL	7440224	34.55	No Criteria	PHENOL		108952	No Criteria	13600000.00
THALLIUM	7440280	No Criteria	3.76	2,4,6TRICHLOR	OPHENOL	88062	No Criteria	192.00
ZINC, TOTAL	7440666	843.58	757.96	BASE NEUTRAL	COMPUNDS			
VOLATILE ORGANIC COMPOUNDS				ACENAPHTHEN	E	83329	No Criteria	7920.00
ACROLEIN	107028	No Criteria	2320.00	ANTHRACENE		120127	No Criteria	320000.00
ACRYLONITRILE	107131	No Criteria	20.00	BENZIDINE		92875	No Criteria	0.02
BENZENE	71432	No Criteria	4080.00	PAHs			No Criteria	1.44
BROMOFORM	75252	No Criteria	11200.00	BIS(2CHLOROE	THYL)ETHER	111444	No Criteria	42.40
CARBON TETRACHLORIDE	56235	No Criteria	128.00			108601	No Criteria	520000.00
CHLOROBENZENE	108907	No Criteria	12800.00	BIS(2ETHYLHE)	(YL)PHTHALATE	117817	No Criteria	176.00
CHLORODIBROMOMETHANE	124481	No Criteria	1040.00	BUTYL BENZYL	PHTHALATE	85687	No Criteria	15200.00
CHLOROFORM	67663	No Criteria	37600.00	2CHLORONAPH	ITHALENE	91587	No Criteria	12800.00
DICHLOROBROMOMETHANE	75274	No Criteria	1360.00	1,2DICHLOROB	ENZENE	95501	No Criteria	10400.00
1,2DICHLOROETHANE	107062	No Criteria	2960.00	1,3DICHLOROB	ENZENE	541731	No Criteria	7680.00
1,1DICHLOROETHYLENE	75354	No Criteria	56800.00	1,4DICHLOROB	ENZENE	106467	No Criteria	1520.00
1,2DICHLOROPROPANE	78875	No Criteria	1200.00	3,3DICHLOROB	ENZIDENE	91941	No Criteria	2.24
1,3DICHLOROPROPYLENE	542756	No Criteria	168.00	DIETHYL PHTH/	ALATE	84662	No Criteria	352000.00
ETHYLBENZENE	100414	No Criteria	16800.00	DIMETHYL PHT	HALATE	131113	No Criteria	8800000.00
BROMOMETHANE (methyl bromide)	74839	No Criteria	12000.00	DI-n-BUTYL PH	THALATE	84742	No Criteria	36000.00
CHLOROMETHANE (methyl chloride)	74873	No Criteria	No Criteria	2,4DINITROTOL	UENE	121142	No Criteria	272.00


		6 -1		ring Complete	RIPDES GP G						
		South Hartford Conveyance Tunnel Construction Dewatering Samples ¹									10 ³
Parameter	Unit	INF 1	INF 3	INF 4	INF 6	Influent Average	EFF 3	EFF 6	Effluent Average	Maximum Daily	Average Monthly
Antimony	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	56	56
Arsenic	µg/L	6	4	ND	ND	3.5	ND	ND	ND	552	11
Cadmium	µg/L	1	1	ND	ND	1	ND	ND	ND	102	71
Chromium	µg/L	29	40	16	21	26.5	9	7	8	3,230	1,000
Copper	µg/L	19.5	22.5	6.5	6.4	13.7	3.1	2.7	2.9	46	30
Cyanide	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	8	8
Lead	µg/L	13	17	4	10	11	ND	ND	ND	1,600	68
Mercury	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	17	1
Nickel	µg/L	31	36	11	16	23.5	3	3	3	598	66
pH (S.U.)		9.65	11.09	10.63	10.62	10.5	7.51	6.71	7.1		
Selenium	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	2,325	569
Silver	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	18	18
Zinc	µg/L	136	194	43	89	115.5	15	16	15.5	761	685
TSS	mg/L	280	970	6300	1200	860 ²	75	77	104 ²	300	
Iron	mg/L	29.6	33.6	11.3	14.5	22.3	2.59	2.82	2.7	10	


		Sei	ith Llast	ring Samples ¹	RIPDES GP G						
		301		No Dilution (DF=1)							
Parameter	Unit	INF 1	INF 3	INF 4	INF 6	Influent Average	EFF 3	EFF 6	Effluent Average	Maximum Daily	Average Monthly
Antimony	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	5.6	5.6
Arsenic	µg/L	6	4	ND	ND	3.5	ND	ND	ND	55.2	1.12
Cadmium	µg/L	1	1	ND	ND	1	ND	ND	ND	10.2	7.08
Chromium	µg/L	29	40	16	21	26.5	9	7	8	323	100
Copper	µg/L	19.5	22.5	6.5	6.4	13.7	3.1	2.7	2.9	4.62	2.98
Cyanide	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	0.8	0.8
Lead	µg/L	13	17	4	10	11	ND	ND	ND	160	6.81
Mercury	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	1.69	0.12
Nickel	µg/L	31	36	11	16	23.5	3	3	3	59.79	6.62
pH (S.U.)		9.6	11.1	10.6	10.6	10.5	7.5	6.7	7.1	5.0-11.0	
Selenium	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	232.46	56.91
Silver	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	1.78	1.78
Zinc	µg/L	136	194	43	89	116	15	16	15.5	76.11	68.5
TSS	mg/L	280	970	6300	1200	860 ²	75	77	104 ²	30	
Iron	mg/L	29.6	33.6	11.3	14.5	22.3	2.59	2.82	2.7	1	

Parameter ¹	Unit	Providence Tunnel		Fou	Foundry		nk CSO ceptor	RIPDES GP G DF=10 ²	
	Unit	Mean	H95% CI℃	Mean	95% CI	Mean	95% Cl	Maximum Daily	Average Monthly
Antimony	µg/L	1	NA	NA	NA	NA	NA	Eff 56	56
Arsenic	µg/L	NA	NA	NA	NArag	NA	NA	552	11 ^{ily}
Cadmium	µg/L	6.2	ND 14 ND	8.5	41.9	5.5ND	18.8	102	71
Chromium	µg/L	27.9	4 67 ND	31.6	60 5	11.9	75	3,230	1,000
Copper	µg/L	36.8	1 50 ND	41.5	501	21.5	40	46	302
Cyanide	µg/L	2NA	40 NA 16	NA	NA6.5	NA 9	NA	8	8230
Lead	µg/L	41.9	2.5 80 6.5	43.3	87 3.7	10.9	63.5	1,600	68
Mercury	µg/L	NNA	ND NAND	NA	NAD	NAND	NIA	N17	18
Nickel	µg/L	25.3	17 50 4	23	58	8.5	44	598	66
pH (S.U.)	µg/L	NA	ND NAND	NA	NAD	NAND	MA	ND	17
Selenium	µg/L	3NA	36 NA 11	NA	N/A3.5	NA 3	NA	2,325	569
Silver	µg/L	19.4	1.09 20 10.6	19.6	20 0.5	7.4	23.8	18	18
Zinc	µg/L	57.7	150 ND	51	91 ^{\D}	23.8	60	761	685
TSS/01	mg/L	NA	ND NAND	NA	NAD	NAND	NA	300	18
Iron	mg/L	NA	94 NA 43	NA	NA 5.5	NA15	NA	1 10	761

Reference 4: Hydrographic Surveys on the Providence and Seekonk Rivers, December 2001

Circuit 2 & Circuit 3 (mid & late ebb) velocity contours

