

THE MESSY ECONOMICS OF SEPTAGE TREATMENT

Case Studies Examining the True Cost of Treating Hauled Waste & Best Management Practices

Austin Weidner, PE

HAULED WASTE BASICS

- High & variable strength organic waste
- May have adverse impacts on POTWs and environment
- Typical methods of Handling & Treatment
 - Holding Tank
 - Addition to Liquid Stream
 - Addition to Solids Stream

Tipping Fees

Economic and Political Implications

Typical Septage Strengths From TR-16; EPA, 199				
Parameter	Concentration (mg/L)			
	Average	Minimum	Maximum	
Total Solids	34,106	1,132	130,475	
TSS	12,862	310	93,378	
BOD	6,480	440	78,600	
COD	31,900	1,500	703,000	
TKN	588	66	1,060	
TP	210	20	760	
рН		1.5	12.6	

CASE STUDY #1: SMALL CAPE / ISLANDS WWTF

Treatment Process

- Headworks
- Primary Clarification
- Secondary System w/ MLE
- UV Disinfection
- Groundwater Discharge

• Flow

- Current ADF = ~ 0.25 MGD
- Seasonal Variation
- Extensive Septage Acceptance Program

COMPARISON TO INFLUENT FLOW

SEPTAGE EVALUATION

Questions

- How much septage is too much septage?
- What is actual treatment cost?

Data

- Design Loadings
- WWTF Influent Operations Data
- Energy Usage Data
- Sludge Quantity & Hauling Contract
- Labor Hours
- Tipping Fee Structure

Assumptions

- Septage Strength
- Maintenance Costs

Course	BOD-5	TSS	TKN	рН
Source	(mg/L)	(mg/L)	(mg/L as N)	(SU)
Supplemental Sampling	1,715	3,660	201	6.7
TR-16 Recommendations	6,000	15,000	700	
Assumed for this Study	3,000	5,000	300	

EVALUATION FINDINGS

Net Benefit to the WWTF

Annual Revenue = \$550,000 Annual Profit = \$350,000

RECOMMENDATIONS & STEPS TAKEN

- There is a Cost to Treat Septage
- Reduced Septage Acceptance
 - Design Loads were being exceeded under certain conditions
 - Limit to <3% of Plant Flow (especially in the spring)

Improved WWTF Operability

- More consistent MLSS and F:M Ratio
- Reduction in Scum
- Less Odors
- Noticeable Reduction in Sludge

Better Performance! Less Cost

Tighe&Bond

CASE STUDY # 2: SCITUATE, MA WWTF

Treatment Process

- Headworks
- Extended Aeration
- Denitrification Filters
- Low-level Copper Removal
- UV Disinfection

• Flow

- Current ADF = ~1.5 MGD
- Mostly Domestic Sewage
- Accept ~11,000 gpd Septage
- Recently Completed Septage Acceptance Facility

EXISTING SYSTEM OVERVIEW

EXISTING SYSTEM OVERVIEW

- Build of Rags & Large Debris
 - Regular vactoring

SCITUATE SEPTAGE UPGRADE

• Benefits

- Can bill haulers for actual volume
- Removes solids
- Reduces labor
- Treating in Solids Handling System reduces main process impacts

CASE STUDY # 3: CENTRAL MASS RURAL COMMUNITY

Treatment Process

- Headworks
- Extended Aeration
- Chemical TP Removal
- UV Disinfection

• Flow

- Current ADF = ~ 1.0 MGD

Currently Under Construction

- TN Removal (Upgrade to MLE)
- Low-level TP Removal (Tertiary Disc Filters)
- Update Old Equipment

SEPTAGE FLOW COMPARISON

EXISTING SEPTAGE OPERATION

Operational Conditions

- Accepted Direct into Influent
- Sources:
 - Regional Septage
 - Tight Tanks
 - Brewery Waste
- Low Tipping Fee attracts Haulers

EXISTING SEPTAGE OPERATION

Operational Conditions

- Accepted Direct into Influent
- Sources:
 - Regional Septage
 - Tight Tanks
 - Brewery Waste
- Low Tipping Fee attracts Haulers

Loading Analysis

- Assumptions for Strength
- Loadings Substantial Contribution

SEPTAGE	Q =	0.014	1.3%	
	Conc	Load	% Inf	
BOD	3000	357	21%	
TSS	5000	595	23%	
TKN	300	36	11%	
NH3	250	30	19%	
ТР	50	6	17%	

TIGHT	Q =	0.004	0.4%	
TANKS	Conc	Load	% Inf	
BOD	190	6.6	0.4%	
TSS	210	7.3	0.3%	
TKN	40	1.4	0.4%	
NH3	25	0.9	0.5%	
ТР	7	0.2	0.7%	

BREWERY	Q =	0.002	0.2%	
	Conc	Load	% Inf	
BOD	2400	34.8	2.1%	
TSS	210	3.0	0.1%	
TKN	70	1.0	0.3%	
NH3	0	0.0	0.0%	
ТР	15	0.2	0.6%	

Tighe&Bond

EXISTING SEPTAGE OPERATION

Operational Conditions

- Accepted Direct into Influent
- Sources:
 - Regional Septage
 - Tight Tanks
 - Brewery Waste
- Low Tipping Fee attracts Haulers

Loading Analysis

- Assumptions for Strength
- Loadings Substantial Contribution

Cost Benefit Evaluation

- ~25% Sludge
- ~20% Aeration Demand

Annual Septage Fee Breakdown

PROPOSED SEPTAGE FACILITY UPGRADE

CONCLUSIONS

Septage is more than just a Revenue Source

- Cost to treat may extend further than one may think
- Understand Septage Impacts on Treatment Process
 - Manage 3% or less

• Design in Flexibility

- Holding Tanks
- Various Treatment Options

Make Receiving Stations User Friendly

- Attract Haulers

Austin Weidner, PE <u>adweidner@tighebond.com</u> (508) 471-9630

