VODA.ai

A Science-based Approach to Manage Water Mains, Wastewater & Lead Pipes

January 24, 2023 Jim Fitchett

Each day, 850 water main breaks occur in North America. Since January 2000, we have suffered:

7,153,966 BROKEN WATER MAINS (INCLUDING 2,916 SO FAR TODAY), \$71,539,663,212 IN WATER MAIN REPAIR COSTS.

According to a 2002 congressional study, corrosion costs U.S. water and waste water systems over \$50.7 billion annually. Since January 2000, the price tag for this epidemic in the United States is:

\$930,181,379,227 IN TOTAL CORROSION COSTS.

CLOCK.COM

WATERMAIN

Key Challenges – Wastewater Incidents, Overflows

Key Challenges – Lead Finder™

Proactive Pipe Management

- Identify high risk mains
- Target top 5% for inspection, monitoring, condition assessment, repair
- Target worst 1% for replacement

Asset Management Decisions with Machine Learning

Do you proactively assess water mains? How do you choose which ones to

Inspect, Monitor, Exercise Valves Repair or Replace Where to put Sensors?

Traditional Methods to Predict Issues

- Pipe Age
- Failure History
- Material
- Cluster Areas
- Intuition
- Some Combination of Above

Source: Data collected from Soil Survey Staff, Natural Resources Conservation Service, U.S. Department of Agriculture Soil Survey Geographic Database.

Lagged Averaged Precipitation Outlook for NOV 2022 units: anomaly (sdX100), SM data ending at 20221024

Other Variables

- Proximities
 - Highways
 - Railroads
 - Bridges
 - Lakes
- Seismic Activity
- Land Use
- Restaurant Clusters
- 100s of Variables

A Science-Based Approach to Decision-Making

Artificial Intelligence Machine Learning

ARTIFICIAL INTELLIGENCE IS EVERYWHERE

It helps reduce risks, improve results

Artificial Intelligence ("AI") is not New

- Coined at Dartmouth College in 1956
- Machines acting rationally (like most people)
- Machine Learning (ML), subset of AI, uses algorithms & models for improving outcomes

Why Machine Learning?

- Increased computing power
- Access to more data
 - $_{\circ}$ Volume
 - o Variety
 - Velocity
- New research

Artificial Intelligence – Computers with the ability to reason as humans

Machine Learning – Computers with the ability to learn without being explicitly programed

> **Deep Learning** – Network capable of adapting itself to new data

ML Detects Emotions

Consistently detects 26 emotions from facial expressions

Applications of ML

GPS (routing, arrival time) Recommendations (Amazon, Netflix, etc.) Autonomous vehicles Weather forecasts Credit assessment Medical diagnosis Credit card fraud Medicare fraud

Chess and GO Speech recognition **Facial recognition Detecting emotions Predict pipe failures Find lead pipes Predict wastewater incidents Sensor placements Improve data quality Pump failure prediction**

Benefits of ML

Science-based decision making to:

Optimize scarce resources

Enhance outcomes and customer experiences

 $_{\odot}$ Find patterns we can't see

How Machine Learning "Learns"

Training data*

	_ 1	2	• • •	n _
1	a_{11}	a_{12}	•••	a_{1n}
2	a_{21}	a_{22}	•••	a_{2n}
3	a_{31}	a_{32}	•••	a _{3n}
•	• •	• •	• •	:
m	a_{m1}	a_{m2}	•••	a_{mn}

*Matrix (mathematics). (2022, September 18). In *Wikipedia*.

https://op.wikipadia.org/wiki/Matrix (mathematics)

Results: patterns & knowledge

Multiple Algorithms & Models Optimize Results

Decision trees Bagging Boosting Random forest k-NN Linear regression **Naive Bayes** Artificial neural networks Logistic regression **Relevance** vector machine Support vector machine

Supervised learning **Unsupervised** learning **Deep learning** Clustering **Dimensionality reduction** Structured prediction Anomaly detection Artificial neural network **Reinforcement learning** Human collaboration

VODA.ai

TARGETEDCAPITAL ANDO&M SPEND

- Targeted Leak Detection & Monitoring
- Targeted Valve Maintenance
- Targeted Inventory
- Remaining Useful Life
- Faster Repairs to reduce risk

Step 1 The Data

VODA.ai

REAL WORLD RESULTS

Traditional Methods: Prior Failure — 11% Pipe Age — 12%

VS. 50% W/ VODA.ai's ML

A proud part of the City of Tucson

VODA.ai found 200% more failures than using traditional methods

50% had no prior failures!

Tucson Water

- 4,600 miles of pipe (230,000 pipe segments)
- In 2019, they engaged VODA.ai for a pilot project.
- We asked for at least five years of data, but to withhold the most recent year (2018), which we then predicted.
- Machine learning found 55% of their pipe failures in the top 1% of rankings by risk
- 17 of the top 18 segments ranked by LoF failed
- The 18th pipe failed 2 months later (18 of the top 18 failed within 14 months)

Looking for the Bull's Eye

Case 1 – Comparing Methods

									l.		
											19

Wastewater Results 2020

NNWW Pilot Results

Top 50 Segments (0.1%) 13 Failures

NNWW Pilot Results

Bottom 20,000 Segments (51.5%)

4 Failures

Of the 50 highest risk segments, (0.1%), 13 failed.NNWW ResultsIn the lowest risk 50%, 4 failed.

Questions?

VODA.ai

Prioritizing Water Infrastructure

jim@voda.ai

50 Milk Street | Floor 15 | Boston, MA 02109