





SIGN UP

WATERMAING | CLOCK.COM

Corrosion is not Sustainabl



Key Challenges — Wastewater Incidents, Overflows
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Key Challenges — Lead Finder™

Public Laterals by Install Year - Public Laterals
< 1929 Prediction Ranking [7137]
1929 - 1950 5 High Likelihood of Lead [785] W
1951 - 1979 Medium Likelihood of Lead [2034]
~—— Low Likelihood of Lead [4318] "

1980 - 1989
—— = 1989 j




Proactive Pipe Management

* |dentify high risk mains

 Target top 5% for inspection, monitoring,
condition assessment, repair

» Target worst 1% for replacement
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Asset Management Decisions
with Machine Learning

Do you proactively assess water mains?
How do you choose which ones to

Inspect,

Monitor,

Exercise Valves
Repair or Replace
Where to put Sensors?




Traditional Methods to Predict Issues

 Pipe Age

* Failure History

* Material

e Cluster Areas

* [ntuition

« Some Combination of Above
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Corrosive Soll

Steel Corrosion Potential
B High
B Low

Moderate

Sowrce: Data collected from Soul Survey Staff. Natwral Resowrces Conservation
Service. US. Department of Agricuiture Soil Survey Geographic Database .
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Other Variables

Proximities

* Highways

 Railroads

 Bridges

 Lakes

Seismic Activity
Land Use
Restaurant Clusters

100s of Variables



A Science-Based Approach to Decision-Making

Artificial Intelligence
Machine Learning




ARTIFICIAL INTELLIGENCE IS (325 :4'4%' 15 14=
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It helps reduce risks, improve results



Artificial Intelligence ("Al”) is not New

» Coined at Dartmouth College in 1956
* Machines acting rationally (like most people)

* Machine Learning (ML), subset of Al, uses
algorithms & models for improving outcomes



Why Machine Learning?

Artificial Intelligence - Computers

* Increased computing power with the ability to reason as humans
* Access to more data
o Volume Machine Learning -
) Computers with the ability to
o) Varlety learn without being explicitly
O Velocity A
* New research D Eaa g -

Network capable of
adapting itself to new
data




ML Detects Emotions

Consistently detects
26 emotions from
facial expressions
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Applications of ML

GPS (routing, arrival time)
Recommendations (Amazon,
Netflix, etc.)

Autonomous vehicles
Weather forecasts

Credit assessment

Medical diagnosis

Credit card fraud

Medicare fraud

Chess and GO

Speech recognition

Facial recognition

Detecting emotions

Predict pipe failures

Find lead pipes

Predict wastewater incidents
Sensor placements

Improve data quality

Pump failure prediction



Benefits of ML

» Science-based decision making to:
oOptimize scarce resources
o Enhance outcomes and customer experiences
oFind patterns we can't see
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How Machine Learning “Learns”

Training data*

1 2 n
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1
21 a1 a9 P aAon
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*Matrix (mathematics). (2022, September 18). In
Wikipedia.
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Multiple Algorithms & Models Optimize Results

Decision trees

Bagging

Boosting

Random forest

K-NN

Linear regression

Nalve Bayes

Artificial neural networks
Logistic regression
Relevance vector machine
Support vector machine

Supervised learning
Unsupervised learning
Deep learning
Clustering
Dimensionality reduction
Structured prediction
Anomaly detection
Artificial neural network
Reinforcement learning

Human collaboration



Ensemble Learning
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TARGETED
CAPITAL AN
O&M SPEND

Targeted Leak Detection & Monit

Targeted Valve Maintenance
Targeted Inventory
Remaining Useful Life

Faster Repairs to reduce risk
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How it works

Three-step process

| SR Gathering data
il

¢

Cleaning data

y
= Predicting risk
1]
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Step 1 The Data

Utility Data

Material
Install Year

Public Data

Soil
Land Use

Proprietary

Data

Volume
Slope
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Planning

Replace
more of
Likel
these to fail
And less of
Not likely
to fail




REAL WORLD RESULTS

Traditional Methods:
Prior Failure — 11%
Pipe Age — 12%

VS. 50%

W/ VODA.ai's ML




TUCSON
WATER

A proud part of the City of Tucson

U

VODA.ai found 200%
more failures than using
traditional methods

500/0 had no

prior failures!



Tucson Water

« 4,600 miles of pipe (230,000 pipe segments)
In 2019, they engaged VODA.ai for a pilot project.

We asked for at least five years of data, but to withhold the most
recent year (2018), which we then predicted.

Machine learning found 55% of their pipe failures in the top 1% of
rankings by risk
17 of the top 18 segments ranked by LoF — failed

« The 18t pipe failed 2 months later
(18 of the top 18 failed within 14 months)
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Looking for the Bull's Eye
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Case 1 — Comparing Methods
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Wastewater Results 2020
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Size of network: 6.485 km
Number of pipe segments: 121.434
Structural failures (no human-caused): 2.737

VODA . .ai accuracy score: 93



NNWW Pilot Results

Top 50 Segments (0.1%)
13 Fallures




NNWW Pilot Results

Bottom 20,000 Segments (51.5%)
4 Falilures




Of the 50 highest risk segments, (0.1%), 13 failed.
NNWW Results  |n the lowest risk 50%, 4 failed.
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Questions?
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Prioritizing Water
Infrastructure

jim@voda.al

50 Milk Street | Floor 15 | Boston, MA 02109



