

Statewide PFAS Assessment of WWTPs and Biosolids in Michigan

NEWEA Conference, Session 22 January 24, 2023

Christopher Curran, PE AECOM PFAS Lead, Water

AS

2

Per- and polyfluoroalkyl substances (PFAS) sources

- EPA Roadmap drivers for wastewater
- Michigan and other PFAS study findings
 - Liquid train

Agenda

- Solids train
- Mitigation Measures
- Michigan land application studies
- Biosolids considerations

Uses of PFAS in Industries

le com.com

PFAS in the One-Water Cycle – Wastewater Treatment Plants

EPA Wastewater Driver: Discharge Limits

Implications of National Pollution Discharge Elimination Permit (NPDES)

New <u>guidance</u> Dec 2022 to state permitters: *Recommend* quarterly PFAS testing at: airports, landfills, paper facilities, electroplating operations, chemical plants *Recommend* POTWs:

- Test influent, effluent and biosolids quarterly
- Update Industrial User (IU) inventories to include "expected or suspected of PFAS discharges"
- Develop best management practices (BMPs) or limits for IUs
- Encourage PFAS pollution prevention, product substitution and good housekeeping practices at IUs where don't exist
- Address PFAS in biosolids: testing, taking actions to reduce discharges from IUs, and monitor biosolids

EPA Wastewater Driver: Hazardous Substance Designation

Implications of draft notification:

- Designates PFOA and PFOS, including their salts and structural isomers, as hazardous substances under CERCLA*
- Requires notification of any release equal to or greater than one pound or more in a 24-hour period
- Do not confuse with Hazardous Waste under the Resource Conservation and Recovery Act (RCRA) which defines waste management and disposal

CERCLA = Comprehensive Environmental Restoration, Compensation and Liability Act

Statewide WWTP Evaluation in Michigan

• 110 WWTPs Evaluated

- 95 Industrial Pretreatment Program (IPP)
- 15 Non-IPP

Of the WWTPs Sampled:

- 95 effluents (80 IPP & 15 non-IPP)
- 54 influent (47 IPP & 7 non-IPP)

Effluent PFOA and PFOS Concentrations

PFOA

PFOS

PFOS at IPP and Non-IPP WWTPs

ecom.com

PFAS Analyte List

#	PFAS Name	Acronym	CAS#	(Carbon #) Chain Length			
Perf	Perfluoroalkyl carboxylic acids (PFCAs)						
1	Perfluorobutanoic Acid	PFBA	375-22-4	(4) Short-chain			
2	Perfluoropentanoic Acid	PFPeA	2706-90-3	(5) Short-chain			
3	Perfluorohexanoic Acid	PFHxA	307-24-4	(6) Short-chain			
4	Perfluoroheptanoic Acid	PFHpA	375-85-9	(7) Short-chain			
5	Perfluorooctanoic Acid	PFOA	335-67-1	(8) Long-chain			
6	Perfluorononanoic Acid	PFNA	375-95-1	(9) Long-chain			
7	Perfluorodecanoic Acid	PFDA	335-76-2	(10) Long-chain			
8	Perfluoroundecanoic Acid	PFUnDA	2058-94-8	(11) Long-chain			
9	Perfluorododecanoic Acid	PFDoDA	307-55-1	(12) Long-chain			
10	Perfluorotridecanoic Acid	PFTrDA	72629-94-8	(13) Long-chain			
11	Perfluorotetradecanoic Acid	PFTeDA	376-06-7	(14) Long-chain			
Perf	uoroalkane sulfonic acids (PFSAs)			•			
12	Perfluorobutane Sulfonic acid	PFBS	375-73-5	(4) Short-chain			
13	Perfluoropentanesulfonic acid	PFPeS	2706-91-4	(5) Short-chain			
14	Perfluorohexane Sulfonic acid	PFHxS	355-46-4	(6) Long-chain			
15	Perfluoroheptane Sulfonic acid	PFHpS	375-92-8	(7) Long-chain			
16	Perfluorooctane Sulfonic acid	PFOS	1763-23-1	(8) Long-chain			
17	Perfluorononanesulfonic acid	PFNS	68259-12-1	(9) Long-chain			
18	Perfluorodecane Sulfonic acid	PFDS	335-77-3	(10) Long-chain			
Prec	Precursors to PFOS						
19	Perfluorooctane sulfonamide1	FOSA	754-91-6	(8) Long-chain			
20	N-methylperfluorooctanesulfonamidoacetic acid ²	MeFOSAA	2355-31-9	(8) Long-chain			
21	N-ethylperfluorooctanesulfonamidoacetic acid ³	EtFOSAA	2991-50-6	(8) Long-chain			
Prec	Precursors to PFCA Family						
22	4:2 Fluorotelomer Sulfonic Acid ⁴	4:2 FTS	757124-72-4	(6) Short-chain			
23	6:2 Fluorotelomer sulfonic acid ⁴	6:2 FTSA	27619-97-2	(8) Long-chain			
24	8:2 Fluorotelomer sulfonic acid ⁴	8:2 FTSA	39108-34-4	(10) Long-chain			
PFA	PFAS Replacement Chemistry						
25	Hexafluoropropylene Oxide Dimer Acid	HFPO-DA	13252-13-6	(6) Short-chain			
26	4,8-Dioxa-3H-perfluorononanoic acid	ADONA	919005-14-4	(7) Short-chain			
27	9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	F53B Minor	756426-58-1	(8) Long-chain			
28	11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid	F53B Major	763051-92-9	(10) Long-chain			

Large group of compounds (>4,700)

· 28 PFAS Analyte List

- 18 PFAS/2 Families Do not degrade
- 3 PFAS / 3 Families PFOS Precursors
- 3 PFAS / 1 Family PFCAs Family Precursors
- 4 PFAS / 3 Families Replacement Chemistry

aecom.com

MI Study - Detection Frequency

https://www.michigan.gov/documents/egle/wrd-pfas-initiatives-statewide-full-report_722902_7.pdf

🔶 aecom.com

Final Michigan Treated Solids PFOS Concentrations

PFAS Source Control – Michigan Case Study

EGLE

AECOM Imagine IL. Delivered

Evaluation of PFAS in Influent, Effluent, and Residuals of Wastewater Treatment Plants (WWTPs) in Michigan

Project Number: 60588767

Prepared in association with Michigan Department of Environment, Great Lakes, and Energy

April 2021

2,000 PFAS industrial effluent samples 574 industrial facilities PFAS sources identified

Examples of Industrial Effluent PFOS Concentrations

https://www.michigan.gov/-/media/Project/Websites/egle/Documents/Programs/WRD/IPP/pfasinitiatives-statewide-fullreport.pdf?rev=6cd77ab93ff441faaa43fc5e9dc3e09a

Industry/Category/Type	# Sampled	% Detection	PFOS Range (ng/L)
Metal Finishing	212	33 %	0.7 – 240,000
Electroplating	44	66 %	0.4 - 50,000
Centralized Waste Treaters	17	86%	1 – 53,000
AFFF-Contaminated Sewers	5	100%	5 – 45,000
Type II Sanitary Landfills	48	94%	6 – 5,000
Type III Sanitary Landfills	7	57%	4 – 4,000
Pulp, Paper and Paperboard	4	100%	2 – 190
Commercial Industrial Laundry Facilities	12	42%	6 – 69

PFAS Source Reduction – Michigan

Example of Effectiveness of Source Reduction Strategies with Industrial Discharges to the System Resulting in PFOS Decreases over Time

2,500	Initial GAC - November 2017 Modified GAC - April 2018	2,500	
2,000 T		2,000	(qdd
Id J,500		1,500	µg/Kg or
(L) 1,000		1,000	iosolids (
500	PFOS WQS (Non- Drink) = 12 ng/L	500	B
0 1/1,	I I	• 0	

Figure 12. Temporal PFOA and PFOS Effluent and Biosolids Concentrations in Lapeer WWTP

Table 9. Substantial PFOS Reduction at WWTPs with Exceedances

Municipal WWTP	Recent PFOS, Effluent* (ng/L)	PFOS Reduction (highest to most recent)	Actions Taken to Reduce PFOS	
Bronson WWTP	5	99%	Treatment (GAC) at source (1)	
Howell WWTP	5	96%	Treatment (GAC/Resin) at source (1)	
Ionia WWTP	<6	99%	Treatment (GAC) at source (1)	
Kalamazoo WWTP	5	90%	Treatment (GAC) at source (2), change of water supply	
KI Sawyer WWTP	9	96%	Eliminated leak of AFFF	
Lapeer WWTP	8.2	99%	Treatment (GAC) at source (1)	
Wixom WWTP	34	99%	Treatment (GAC) at source (1)	

*Data received as of December 31, 2020

https://www.michigan.gov/documents/egle/wrd-PFAS-Biosolids-Strategy_720326_7.pdf

Michigan's Interim Strategy to Land Application of Biosolids Containing PFAS

Tier 3: PFOS ≥ 125 µg/kg

- Cannot be land applied
- Investigate potential sources to develop a source reduction program

Tier 2: PFOS ≥ 50 µg/kg & < 125 µg/kg

- Investigate potential sources to develop a source reduction program
- Reduce land application rates to no more than 1.5 dry tons per acre (or submit an alternative risk mitigation strategy)

Tier 1: PFOS > 20 µg /kg & < 50 µg/kg

 Consider investigating sources and sampling the WWTP effluent for PFAS

MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

LAND APPLICATION OF BIOSOLIDS CONTAINING PFAS

Interim Strategy

<image>

https://www.michigan.gov/documents/egle/wrd-PFAS-Biosolids-Strategy_720326_7.pdf

Michigan, AECOM, and California Studies

- AECOM Study 2021 - 19 WWTPs
- California Study 2021 (Q1,Q2, and Q3)
 - 180 WWTPs
 - 1 MGD dry weather design
- Michigan Study 2018
 - 42 WWTP
 - 20 largest (10-930 MGD)
 - 22 various treatment processes (0.2-9 MGD)

 Number of Participants (19 total in 8 states)

 1 participant
 2 participants

 3+ participants

California WWTPs

https://www.michigan.gov/documents/egle/wrd-pfas-initiatives-statewide-full-report_722902_7.pdf https://www.waterboards.ca.gov/pfas/

Michigan WWTPs

Upper Peninsula

🔶 aecom.com

Effluent PFAS Concentrations – All 3 Studies

le com.com

Low Flow with Industrial Impact

High Flow with Industrial Impact

Final Treated Solids PFAS Concentrations – All 3 Studies

Final Treated Solids PFOS Concentrations - Multiple Published Studies

Michigan Agricultural Fields Study

Agricultural fields (22)

- Associated with 8 WWTPs
- 11 field lower impacts / 11 fields higher impacts
- Soil, surface water, and groundwater sampling
- Biosolids PFOS concentrations
- Dates of land application
- Application rate (dT/acre)

https://www.michigan.gov/egle/0,9429,7-135-3313_71618_3682_3683_3721-531869--,00.html

Migration Pathways for PFAS in Land-Applied Biosolids

Example of Agricultural Field Evaluated

ecom.com

Biosolids Application Rates	Lower Impacted WWTPs	Higher Impacted WWTPs
Total land-applied biosolids – (dry tons - dT)	176 - 400	39 - 1,422
Average dT/Acre	2 - 10	1 - 4
Weighted Use Ratio (Total dT/Site Acres)	6 - 23	4 - 28

		Lower Impacted WWTPs		Higher Impacted WWTPs			
-	Environmental Matrices	Total PFAS	PFOS	PFOA	Total PFAS	PFOS	PFOA
-	Effluent (ng/L)	4 - 15	2 - 5	2 - 11	300 - 143,360	169 - 635	ND - 10
WWTPs	Biosolids (µg/Kg)	34 - 214	3 - 90	ND - 18	1,173 - 2,358	1,060 - 2,150	ND - 5
	Soil (µg/Kg)	ND - 15	ND - 9	ND - 2	1 - 182	1 - 172	ND - 2
	Groundwater ² (ng/L)	ND - 97	ND - 2	ND - 6	ND - 5411	ND - 181	ND - 61 ¹
AG Fields	Surface Water ² (ng/L)	ND - 52	ND - 5	ND - 6	2.5 - 2,647	ND - 2,060	ND - 64
	Tile Drain² (ng/L)	ND - 58	ND	ND - 6	9 - 2,495	1 - 2,080	ND - 95
	Ponded Water ² (ng/L)	6 - 346	ND - 2	ND - 53	17 - 968	ND - 533	2 - 53

¹Perched groundwater at one location had Total PFAS = 41,823 ng/L, PFOS = 35,300 ng/L, and PFOA = 1,930 ng/L.

²Groundwater, surface water, tile drain, and ponded water samples were not collected in every agricultural field.

https://www.michigan.gov/documents/egle/wrd-pfas-initiatives_691391_7.pdf

What do you do if you cannot land apply or landfill biosolids?

Technologies available or in development

- Incineration
- Alternative combustion / Pyrolysis / Gasification
- Supercritical water oxidation
- Hydrothermal liquefaction

Data are still limited but more information is coming soon

- Industrial influence on PFAS load most frequently evident in smaller facilities
- PFOS is likely to be the primary driver in the final effluent and beneficial reuse

PFAS were detected in all sampled WWTPs

and can limit beneficial reuse

Short-chain PFAS: tendency to remain in liquid

• Long-chain PFAS: higher affinity to the biosolids

- Integrate strategies now (source controls, master planning)
- In US, EPA strategic roadmap identifies upcoming considerations for wastewater utilities

IDENTIFY. RESOLVE.

AECOM Delivering a better world

Christopher Curran, PE PFAS Lead, Water Chris.curran@aecom.com