

Predictive Iron Dosing for Phosphorus Removal

A Data Driven Strategy

Varun Srinivasan, PhD <u>Ph: (</u>978) 983-2045 <u>Email: VSrinivasan@brwncald.com</u>

Co-authors:

Varun Srinivasan, Ahmed Al-Omari – **Brown and Caldwell**; Haydee De Clippeleir, Ryu Suzuki – **DC Water**;

Chemical P Removal – Ferric Addition

- Iron to P molar ratio is 1:1 without any competing reactions.
- Very complex chemical precipitation reaction with several factors impacting efficiency
 - formation of hydrous ferric oxides (HFO),
 - Aging of HFO,
 - HFO floc structure
 - sorption of orthophosphate (OP) to HFO
 - degree of mixing at addition point,
 - SRT
 - and many others....

Blue Plains AWTP

- Average flow = 384 mgd
- Phosphorus limits
 - Monthly average = 0.17 mg/L
 - Weekly Average = 0.34 mg/L.
- Phosphorus removal is accomplished primarily through ferric chloride addition.
 - Multiple dosing locations

Why optimize ferric dosing?

- Most facilities operate at a fixed dosing rate.
- Flow-paced dosing can help optimize but is still not reactive to dynamic influent phosphorus concentrations

- Increasing ferric chloride costs
 - Average yearly increase = ~15 % (significantly higher than inflation)
- Uncertainty in future costs.
- Increased focus on sustainability

Why a data-driven strategy?

Machine Learning vs Artificial Intelligence (AI)

Machine Learning

- Machine learning is the ability of a computer to learn from data.
- Supervised Learning learning from labeled data.
 - Can be done for classification and regression
- Unsupervised Learning learning through characteristics of unlabelled data.

Artificial Intelligence

- Deep learning also learns from data
- Uses neural network to learn patterns in the data
- Deep learning models are typically black box models.

Approach

Explore Diagnosing source of effluent P upset

Explore Permitting Requirements

Explore Understanding current ferric dosing strategy

Explore Effect of Fe:P Molar Ratio

- Historically, Fe/P ratio has been between 0.9-2 mol/mol
- No difference in effluent OP with different Fe:P dosages

Explore Effect of Dosing Location

Dosing has been trending towards more secondary Fe dosing

No difference in effluent OP in primary vs secondary Fe dosing

- Predict effluent orthophosphate with a forecasting period of 3 days.
- Use predictive variables based on plant staff and expert input
 - Influent Phosphorus
 - Ferric Chloride Dose Primary and Secondary
 - Historical Effluent Orthophosphate
 - Secondary Effluent TSS
- Split dataset into training (2012-2018) and test (2018-2020) to provide independent validation.

Model Comparing modeling approaches

Interpret What are the best predictors of Effluent OP?

Model Predicting Effluent OP using Linear Regression

Observed OP (lbs/day)

Conclusions

- Evaluating multiple modeling approaches can be useful to determine the right one.
- Simple linear regression can be powerful under the right circumstances
- ML models are more interpretable and can be a powerful tool

- Effluent OP was predicted with a ~80% accuracy.
- The model provides a 3-day forecasting period.

Analytics Maturity

How would an operator use this model?

- Ability to forecast increase in effluent orthophosphate
- Proactively increase ferric chloride dosing.
 - Might want to wait and see if increase in orthophosphate is going to be long-term or temporary
- Decision Support
 - When to change ferric chloride dosing?
 - What is the required ferric chloride dosing for achieving target effluent OP?

Thank you. **Questions?**

Ph: (978) 983-2045 Email: VSrinivasan@brwncald.com

