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• Iron to P molar ratio is 1:1 without any competing reactions.

• Very complex chemical precipitation reaction with several factors impacting 
efficiency

• formation of hydrous ferric oxides (HFO),

• Aging of HFO,

• HFO floc structure

• sorption of orthophosphate (OP) to HFO

• degree of mixing at addition point, 

• SRT

• and many others….

Chemical P Removal – Ferric Addition
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• Average flow = 384 
mgd

• Phosphorus limits

• Monthly average = 
0.17 mg/L

• Weekly Average = 
0.34 mg/L. 

• Phosphorus removal is 
accomplished primarily 
through ferric chloride 
addition. 

• Multiple dosing 
locations

Blue Plains AWTP
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Ferric Dosing
Ferric Dosing

Ferric Dosing
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Why optimize ferric dosing?
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• Most facilities operate at a fixed dosing 
rate. 

• Flow-paced dosing can help optimize but is 
still not reactive to dynamic influent 
phosphorus concentrations

• Increasing ferric chloride costs

• Average yearly increase = ~15 % 
(significantly higher than inflation)

• Uncertainty in future costs. 

• Increased focus on sustainability



Brown and Caldwell 5

Meet phosphorus permit

Optimize ferric chloride dosing

Provide decision support

Key 

objectives



Why a data-driven strategy?
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Wisdom 

Data

Information

Knowledge

Predictive capabilities that enable best outcomes

Historical actions and results  

Combined data with context

Data obtained by the facility and stored in 

data silos
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Machine Learning

• Machine learning is the ability of a 
computer to learn from data.

• Supervised Learning - learning from 
labeled data. 

• Can be done for classification and regression

• Unsupervised Learning - learning through 
characteristics of unlabelled data. 

Machine Learning vs Artificial Intelligence (AI)

Artificial Intelligence

• Deep learning also learns from data

• Uses neural network to learn patterns 

in the data

• Deep learning models are typically 

black box models. 
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Use process 

knowledge to

explore 

optimization 

opportunities

EXPLORE

Use simple 

and AI/ML

modeling

approaches

MODEL

Prescribe 

optimization

opportunities

based on 

modeling

INTERPRET
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Approach

LIMS

OBTAIN

Outlier removal 

and smoothing

SCRUB



Explore
Diagnosing source of effluent P upset
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Orthophosphate is 

the main source of 

effluent P spikes

Particulate P is the 

main source of 

effluent P



Explore
Permitting Requirements

Brown and Caldwell 10



Explore
Understanding current ferric dosing strategy
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Influent P 

Spikes

Effluent P 

Spikes Operator 

increases ferric 

dosing

3-4 d 2 d



Explore
Effect of Fe:P Molar Ratio
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• Historically, Fe/P ratio has 
been between 0.9-2 
mol/mol

• No difference in effluent OP 
with different Fe:P dosages



Explore
Effect of Dosing Location
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Dosing has been 
trending towards more 

secondary Fe dosing

No difference in 

effluent OP in primary 

vs secondary Fe dosing



Model
Setup
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Predictive Window – 3 

days

• Predict effluent orthophosphate with a forecasting period of 3 days. 

• Use predictive variables based on plant staff and expert input

• Influent Phosphorus

• Ferric Chloride Dose – Primary and Secondary

• Historical Effluent Orthophosphate

• Secondary Effluent TSS

• Split dataset into training (2012-2018) and test (2018-2020) to provide 

independent validation.

Today’s Data Data to predict



Model
Comparing modeling approaches
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Linear 

Regression
Neural

Network

K-Nearest

Neighbor

Random

Forest

XGBoost Support

Vector

Regression
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Linear regression performed best 
with a higher R2 value



Interpret
What are the best predictors of Effluent OP?
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The top predictors (highlighted) 
were moved forward into a 

prediction model



Model
Predicting Effluent OP using Linear Regression
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R2 = 0.79



Conclusions
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• Evaluating multiple modeling approaches can 
be useful to determine the right one.

• Simple linear regression can be powerful under 
the right circumstances

• ML models are more interpretable and can be a 
powerful tool 

• Effluent OP was predicted with a 
~80% accuracy. 

• The model provides a 3-day 
forecasting period. 



Where do we go from here?
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• Ability to forecast increase in effluent orthophosphate

• Proactively increase ferric chloride dosing. 

• Might want to wait and see if increase in orthophosphate is going to be long-term 

or temporary

• Decision Support

• When to change ferric chloride dosing?

• What is the required ferric chloride dosing for achieving target effluent OP?

How would an operator use this model?
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Thank you.

Questions?
Ph: (978) 983-2045
Email: VSrinivasan@brwncald.com


