<u>Machine Learning:</u> How It Can Support Innovation In WWT/WRR? Can It Be Trusted???

NEWEA Annual Meeting 2023

Amy Mueller, Northeastern University

a.mueller@northeastern.edu

Agenda for the talk

- Machine learning what is it & what is it good for?
- Proof of concept ML applied to a WRR challenge
- How can we work together as a community to take advantage of ML?

"Machine Learning" – all the rage!

- Machine learning simplest definition
 - Extracting information on patterns from data
 - Contrasts with physics-based modeling approaches (known equations)
 - \neq artificial intelligence (AI) but can be used together

Compelling capabilities

- Able to learn complex non-linear relationships
- Even
 - (i) when we don't know the equation for the actual physical relationship
 - (ii) when the equations are known but too complex to viably model
- Can simultaneously learn to predict multiple target parameters

Great! What do we need to get started?

- A clear statement of the goal
 - Monitoring vs. controls?
 - Online vs. retrospective?

i.e., "What information can we use as model inputs?Do we need model inputs<u>in real time</u> (sensors)?"

- Some idea about the relationship between different signals
- Data usually lots of data
 - For full range of conditions you need to model
 - INCLUDING (ideally) conditions "outside target norm"

Contrast to "traditional" models

In ML system

• NOT obvious where we shift from *interpolation* to *extrapolation*

And in WW systems

• We usually don't want to push anything to the breaking point

Vocab: what is a "model"?

Vocab: what is an "ML model"?

Proof of concept... ML for EBPR controls

EBPR Recap

Microorganisms (PAOs) for Enhanced Biological P Removal (EBPR) process:

- anaerobic phase release P, K, Mg
- aerobic phase uptake P, K, Mg

Recovery target

Magnesium ammonium phosphorus (MgNH₄PO₄ = struvite)

EBPR Challenge – Detect Removal Endpoint

In SBR

- Aerating (= \$) to promote uptake of P by microbes
- Useful to know in real time when P concentrations are "sufficiently low" to start next batch

Challenge:

Lack of reasonable, affordable instrumentation for P!

Proposal – Use what we know!

Sensors are available!

• K⁺ and Mg²⁺ ISEs

Because we know ISEs are imperfect

- Ca²⁺, hardness ISEs (also sense Mg²⁺)
- Na⁺, NH₄⁺ ISEs (also sense K⁺)

ML is a good option here because

- Co-transport relationship is complex & non-linear
- Physics of these sensors is complex & non-linear

Need DATA – lab scale pilot system

Lab reactor at UW (Pic. by: Amy Mueller)

- No sensor for P
- Some extra sensors included for evaluation
- Collected data for 10 "normal" uptake/release cycles and 10 "extreme" uptake/release cycles
- "Extreme" cycles varied feed media in a way that would disrupt sensor accuracy but not biology

Observed two depletion patterns → Need controller to identify stop point in each

Northeastern

Civil and Environmental Engineering

extreme"

Real data!

"normal"

Machine learning – tested several methods

Evaluating the Controller

t_{ideal}

t_{trigger} – t_{ideal} Error = t_{ideal}

Results

- The sensor combination that minimized error was... ONLY A SINGLE K⁺ SENSOR !
- Using the "slope" configuration (sensor change per time) was far more robust to system variability & sensor noise
- This 1-sensor system was also **optimal for the "extreme" cases**
- Choice of ML model was not important (all 4 worked)

Wait – is ML even needed here??

Run one last competition – "simple" K+ threshold vs ML model

- Use K+ sensor slope data (since it was more robust)
- Simple threshold-based rule choose slope cutoff based on training data

Northeastern

Civil and Environmental Engineering

1.0

0.8

0.6

RMSE

0.4

0.2

0.0

Run-off Competition Results: ML wins!

Lighter color = lower error

WW: P removal process control

Northeastern Civil and Environmental Engineering

So! <u>CAN</u> we operationalize ML for WW??

- **1.** Are the right predictor signals available? For real-time monitoring or controls, need reasonable sensor data.
- **2.** Training data are critical: do we have a pilot system we can "crash" and not worry too much (or can we simulate it)?
- **3.** Formatting the data to best "teach" the algorithms is often more important than the choice of ML algorithm (within limits)
- **4.** Metric of success needs to be in "WW framework" (NOT "ML framework")
- **5. Implementing ML on SCADA?** While training is a lot of work, these algorithms run fast once trained & are easily ported to ops

SHOULD we operationalize ML for WW??

- **1.** Can we use a physics-based model? If we already know the equations & it is computationally tractable, stick with that.
- 2. Correlation vs causation. Do we know which signals are trustworthy as predictors?
- **3. Can we define and characterize failure modes?** (Even in a related pilot?) If not, there can be high risk in the edge cases.
- **4.** Are we generating an actionable insight? Finding patterns can be satisfying, but how does it improve operations?

Thought provoking... how to move forward?

Collaboration, collaboration, collaboration!

Operations + Consulting + Academia

Defining the problem: how to promote optimized plant ops Pilot scale systems for robustness assurance

"Computer science types" to streamline algorithm dev

Metrics/results in the context of improvement to ops

Between multiple plants to test transferability and share learning

Acknowledgements - Questions ?

- Research group
 - Wenjin Zhang

Contact:

Amy Mueller

a.mueller@northeastern.edu

- Collaborators:
 - Mari Winkler, University of Washington
- Funding
 - Northeastern University Faculty Funds

Additional Slides

Core steps/issues

- Interpolation vs. extrapolation
- Balanced datasets (to model anomalies when needed)
- Data normalization minimize size of training dataset needed
- Defining metric of success needs to be in context of plant ops. Cost decrease, removal efficiency increase, expanded set of conditions we can manage

WW: low concentration NH_{4}^{+}

Northeastern

Civil and Environmental Engineering

Sensor data fusion

Data Fusion for Environmental Process Control: Maximizing Useful Information Recovery under Data Limited Constraints

Andrew M. Snauffer^{1*}, Umang Chauhan¹, Kathryn Cogert², Mari K. H. Winkler², and Amy V. Mueller¹

¹Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115 USA ²Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195 USA

*Influent = synthetic wastewater

Reactor operation from Wei, Stephany P., et al (2021)

Project overview

Northeastern

Civil and Environmental Engineering

Raw predictor extraction:

• Mean value of a 35-sec window

Slope-based predictor extraction:

• Two sensor readings separated by a 2-min time window

EBPR cycles for training

Northeastern Civil and Environmental Engineering

Model training

Optimized parameters

Model	Parameter search space	Tuning	Optimal setting
SVM	Kernel choice: linear, Gaussian, polynomial Misclassification penalty factor (C): $\log[10^{-3}, 10^{3}]$	Default	Linear log(298.38)
LR	Regularization function: Lasso, Ridge Regularization strength (λ): [0, 0.1]	Default Manual	Lasso 0.0035
RF	Tree size: [5,300]	Manual	12
BC	Kernel: Gaussian, triangular, Epanechnikov, uniform Kernel smoothing window width: [10 ⁻² , 1]	Default Manual	Gaussian 0.1149

Results on test datasets (Cycles 5 and 8)

Northeastern

Civil and Environmental Engineering

Results on sensitivity data (Cycle 19)

Northeastern

Civil and Environmental Engineering

