
Machine Learning:
How It Can Support     

Innovation In WWT/WRR?

Can It Be Trusted???

NEWEA Annual Meeting 2023

Amy Mueller, Northeastern University

a.mueller@northeastern.edu

mailto:a.mueller@northeastern.edu


Agenda for the talk

• Machine learning – what is it & what is it good for?

• Proof of concept – ML applied to a WRR challenge

• How can we work together as a community to take advantage of 
ML?



“Machine Learning” – all the rage!
• Machine learning – simplest definition

• Extracting information on patterns from data
• Contrasts with physics-based modeling approaches (known equations)
•  artificial intelligence (AI) – but can be used together

• Compelling capabilities
• Able to learn complex non-linear relationships
• Even 

(i) when we don’t know the equation for the actual physical relationship
(ii) when the equations are known but too complex to viably model

• Can simultaneously learn to predict multiple target parameters



Great!  What do we need to get started?

• A clear statement of the goal
• Monitoring vs. controls?
• Online vs. retrospective?

• Some idea about the relationship between different signals

• Data – usually lots of data
• For full range of conditions you need to model
• INCLUDING (ideally) conditions “outside target norm”

i.e., “What information can 
we use as model inputs?  
Do we need model inputs 
in real time (sensors)?”



Contrast to “traditional” models

Magic

y = mx + b

y x

x

Benefits of physics-based models
• Simple to visualize
• Equation represents a 

relationship we are familiar with 
(and can verify)

• Obvious where we shift from 
interpolation to extrapolation

In ML system
• NOT obvious where we shift 

from interpolation to 
extrapolation

And in WW systems
• We usually don’t want to push 

anything to the breaking point



Vocab:  what is a “model”?

Model
Independent variables Dependent variable(s)

Model

CALIBRATION

Known inputs

Desired 
outputs

Adjust 
model 
parameters 
to best 
predict 
outputs 
from inputs

Model

USE

Known inputs

Uncertainty can be estimated by 
residual error in CALIBRATION

Estimated outputs

MODEL DESIGN HAPPENS HERE



Vocab:  what is an “ML model”?

ML
Model

Independent variables

“Predictors”

Dependent variable(s)

“Target(s)”

ML
Model

CALIBRATION

Known inputs

Desired 
outputs

Adjust 
model 
parameters 
to best 
predict 
outputs 
from inputs

ML
Model

USE

Known inputs

Uncertainty can be estimated by 
residual error in CALIBRATION

Estimated outputs

TRAINING PREDICTING
TRAINING

MODEL DESIGN HAPPENS HERE



Proof of concept… ML for EBPR controls



Figure credit Winker lab

Co-transport relationship in PAOs 

Microorganisms (PAOs) for Enhanced 
Biological P Removal (EBPR) process: 

• anaerobic phase – release P, K, Mg
• aerobic phase – uptake P, K, Mg

Magnesium ammonium 
phosphorus

(MgNH4PO4 = struvite)

EBPR Recap

Recovery 
target



Figure credit Winker lab

EBPR Challenge – Detect Removal Endpoint

In SBR
• Aerating (= $) to promote uptake of 

P by microbes
• Useful to know in real time when P 

concentrations are “sufficiently 
low” to start next batch

Challenge:
Lack of reasonable, affordable 
instrumentation for P!



Sensors are available!
• K+ and Mg2+ ISEs

Because we know ISEs are imperfect
• Ca2+, hardness ISEs (also sense Mg2+)
• Na+, NH4

+ ISEs (also sense K+)

ML is a good option here because
• Co-transport relationship is complex & 

non-linear
• Physics of these sensors is complex & 

non-linear

Measured 𝐌𝐠𝟐+

Measured P

Proposal – Use what we know!

Co-transportation 
relationship in PAOs! 



• No sensor for P
• Some extra sensors 

included for evaluation

• Collected data for 10 
“normal” uptake/release 
cycles and 10 “extreme” 
uptake/release cycles

• “Extreme” cycles varied 
feed media in a way that 
would disrupt sensor 
accuracy but not biology

Lab reactor at UW (Pic. by: Amy Mueller)

Need DATA – lab scale pilot system



Example target limit 

~0.2 mg-P/L

Observed two depletion patterns
 Need controller to identify stop point in each 



DONEClass 1 Class 1 DONE

Real data!
“n

or
m

al
”

“extrem
e”



Support vector machine

Logistic regression

Random forest

Bayesian classification

• Well developed 
classification methods

• Useful for (relatively) 
small training datasets

• Different model types

• Tested each with 
variable combo/# of 
sensor inputs (up to 7)

Machine learning – tested several methods

Can we identify the “correct” stopping 
point?

What is the cheapest sensor hardware 
set we can recommend?



Error = 
ttrigger − tideal

tideal

ttrigger: 5th consecutive DONE report 

tideal Evaluating the Controller

DONE

DONE



Results

• The sensor combination that minimized error was… ONLY A 
SINGLE K+ SENSOR !

• Using the “slope” configuration (sensor change per time) was far 
more robust to system variability & sensor noise

• This 1-sensor system was also optimal for the “extreme” cases

• Choice of ML model was not important (all 4 worked)



Run one last competition – “simple” 
K+ threshold vs ML model

• Use K+ sensor slope data (since it 
was more robust)

• Simple threshold-based rule –
choose slope cutoff based on 
training data

Wait – is ML even needed here??



Run-off Competition Results:  ML wins! 

Lighter color = lower error



“Virtual sensor” for P process control 

Measured P concentration

Energy saved!

WW:  P removal process control

ML

K+ ISE

100% accuracy!

PAO



So! CAN we operationalize ML for WW??
1. Are the right predictor signals available? For real-time monitoring 

or controls, need reasonable sensor data.
2. Training data are critical: do we have a pilot system we can “crash” 

and not worry too much (or can we simulate it)?
3. Formatting the data to best “teach” the algorithms is often more 

important than the choice of ML algorithm (within limits)
4. Metric of success needs to be in “WW framework” (NOT “ML 

framework”)
5. Implementing ML on SCADA? While training is a lot of work, these 

algorithms run fast once trained & are easily ported to ops



SHOULD we operationalize ML for WW??

1. Can we use a physics-based model? If we already know the 
equations & it is computationally tractable, stick with that.

2. Correlation vs causation. Do we know which signals are 
trustworthy as predictors?

3. Can we define and characterize failure modes? (Even in a 
related pilot?)  If not, there can be high risk in the edge cases.

4. Are we generating an actionable insight? Finding patterns can 
be satisfying, but how does it improve operations?



Thought provoking… how to move forward?

• Are the right predictor data available? For real-time monitoring 
or controls, need sensor data to support the algorithms.

• Training data are critical:  pilot systems we can “crash” and not 
worry too much

• Formatting the data to best “teach” the algorithms is often more 
important than the choice of ML algorithm (within limits)

• Implementing ML on SCADA? While training is a lot of work, 
these actually run fast once trained and are easily built for 
operations

Collaboration, collaboration, collaboration!

Operations + Consulting + Academia

Defining the problem:  how to promote optimized plant ops

Pilot scale systems for robustness assurance

“Computer science types” to streamline algorithm dev

Metrics/results in the context of improvement to ops

Between multiple plants to test transferability and share learning



• Research group
• Wenjin Zhang

• Collaborators:
• Mari Winkler, University of 

Washington

• Funding
• Northeastern University Faculty Funds

Acknowledgements – Questions ?
Contact:
Amy Mueller
a.mueller@northeastern.edu



Additional Slides



Core steps/issues

• Interpolation vs. extrapolation

• Balanced datasets (to model anomalies when needed)

• Data normalization – minimize size of training dataset needed

• Defining metric of success – needs to be in context of plant ops.  
Cost decrease, removal efficiency increase, expanded set of 
conditions we can manage



A: NH4+ ISE as stand-
alone sensor:

Nernst model results in 
significant bias from K+ 
and Na+ (not shown)

B: 3-ISE (NH4+, K+, 
Na+) sensor suite:

Nikolsky-Eisenman 
physics model reduces 
but does not remove 
bias or interference

C: 3-ISE sensor suite + 
ML data model:

Bias removed and 
interference significantly 
decreased
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EBPR cycles 

~60 min anaerobic phase ~210 min aerobic phase

~8 min settling 

20 cycles measured 

Cycle 1 – 10 cycles are “normal” Cycle 11 – 20 cycles are chemically-varied 

Reactor operation

The reactor influent* is similar to 

real operating EBPR reactors  

~10 min feeding

The Mg2+/Ca2+ ratio was changed 

in influent recipe by increasing 

Ca2+ concentration 

25 samples / cycle 25 samples / cycle

*Influent = synthetic wastewater 
Reactor operation from Wei, Stephany P., et al (2021)
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Project overview

. . .

AAS

LabVIEW

[PO4
3−], [NH4

+]

Logged raw signal

Grab samples 
& filtering

Gallery 
Analyzer

V_K+, V_NH4
+, V_Na+

V_Mg2+, V_Ca2+, V_CI−, 
V_hardness, etc.

[K+], [Mg2+],
[Ca2+],[Na+]

Data processing and 

Machine Learning 

algorithms

Reactor

…

Sensor array

Electrical 
Conductivity

VWR 
2052-B
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Predictors – input data extraction

Raw predictor extraction:

• Mean value of a 35-sec window

Slope-based predictor extraction:

• Two sensor readings separated by 

a 2-min time window
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EBPR cycles for training 

Cycles 1 – 10 are “normal” Cycles 11 – 20 are chemically-varied 

~60 min anaerobic phase ~210 min aerobic phase



Sensor dataset 

Cycle 1 – 20 

Training dataset:  Cycles 1-4, 

6-7, 9-12 (normalized) with 

10-fold cross-validation

Input data

Test dataset: 

• Cycles 5, 8

• Cycles 13-20  

Sensors C(7, k)  k = 1,2,…,7  

Algorithms SVM, LR, RF, BC

Optimized models

Accuracy test

Robustness test

Data size

Training 3048
Class 1: 1175

Class 2: 1873

Test 741
Class 1: 319

Class 2: 422

“Extreme” 1824
Class 1: 1060

Class 2: 764

Model training



Model Parameter search space Tuning Optimal setting

SVM
Kernel choice: linear, Gaussian, polynomial

Misclassification penalty factor (C): log[10−3, 103]
Default 

Linear

log(298.38) 

LR
Regularization function: Lasso, Ridge

Regularization strength (λ): [0, 0.1]

Default 

Manual

Lasso

0.0035

RF Tree size: [5,300] Manual 12

BC
Kernel: Gaussian, triangular, Epanechnikov, uniform

Kernel smoothing window width: [10−2, 1]

Default

Manual 

Gaussian

0.1149

Optimized parameters
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Results on test datasets (Cycles 5 and 8) 

7-sensor configuration: 

K+, NH4
+, Na+, Ca2+, Cl−,

hardness, conductivity

NH4
+Na+ Ca2+Cl− h cK+NH4
+Na+ Ca2+Cl− h cK+
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Results on sensitivity data (Cycle 19)


