

Green Stormwater Infrastructure Candidate Location Siting Application

Michael Hanley, Lucica Hiller, David Bedoya

City of Somerville, Massachusetts

Agenda

- Introduction and Background Information
- Challenges of Green Stormwater Infrastructure (GSI) in Dense Urban Areas
- Criteria for GSI Siting
- Automating the Process of GSI Candidate Siting
- Innovations and Successes of our GSI Siting Tool
- Potential Future Improvements and Applications
- Summary, Conclusions, Q&A

Background Information

- City of Somerville, Massachusetts
 - Most densely populated City in New England
 - Conveyance Systems mostly built in late 1800s to early 1900s
 - Rapid Development = Rapid Increase in Imperviousness
 - Development of a Flood Mitigation and Water Quality Improvements Master Plan

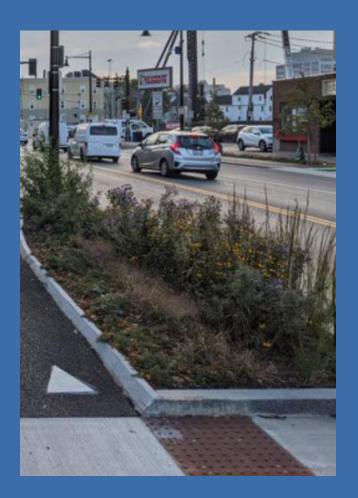
Green Stormwater Infrastructure (GSI)

- Plants, soils, permeable materials, and other landscaping features to capture and filter stormwater and recharge groundwater.
- Known to bring community benefits that range from flood control, water quality improvements to a reduction in urban heat island effect.
- Performance is highly site-specific with soil, topographic and groundwater properties conditioning performance of these systems.

Challenges of GSI in Dense Urban Areas

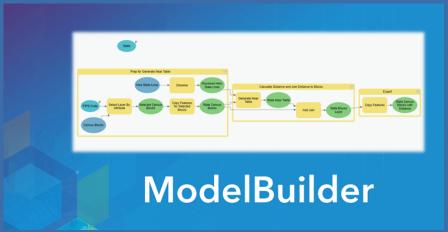
- Distributed nature of GSI
- Site-specific challenges and variables
 - Must be located away from utilities
 - Required soil parameters
 - Required ground sloping
 - Required drainage volumes

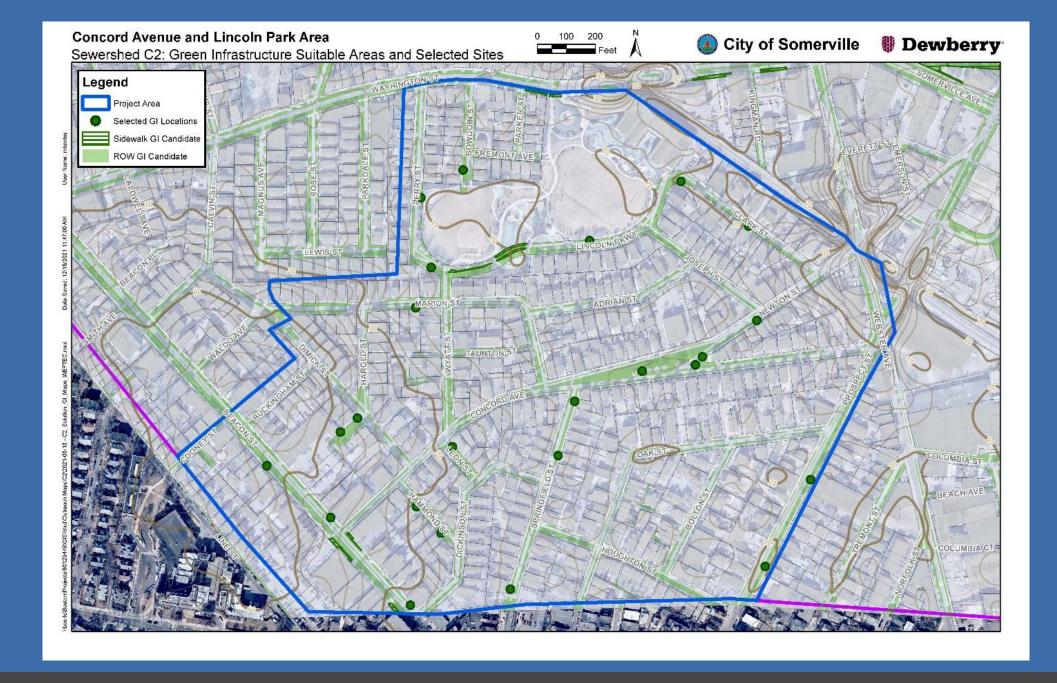
Criteria for GSI Siting

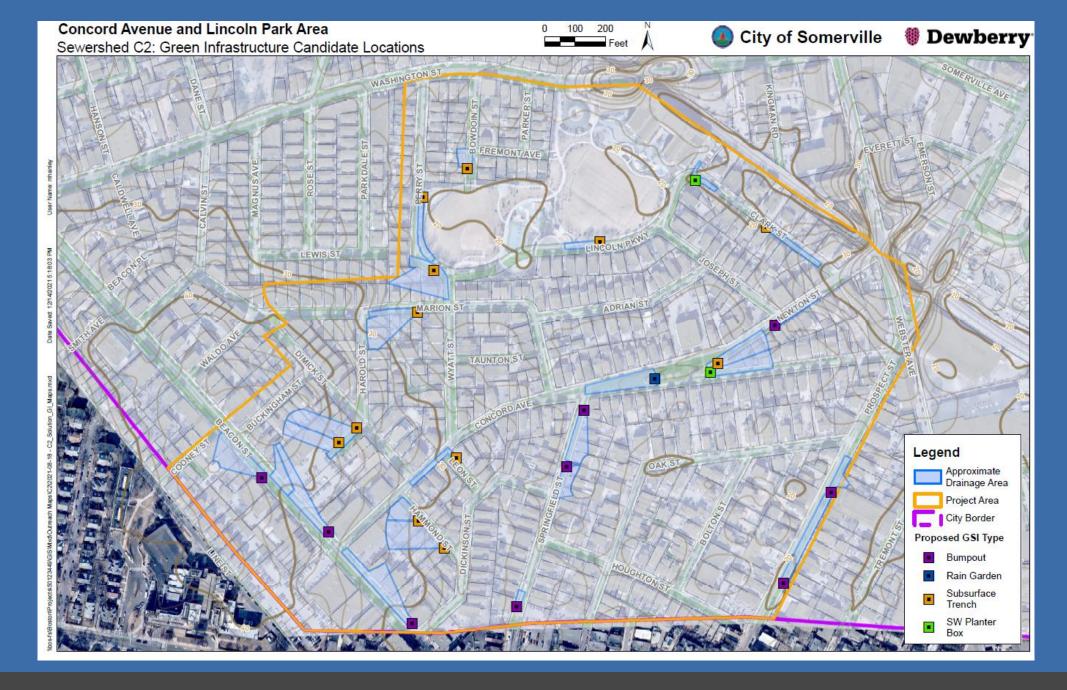

PARAMETER	CRITERION	SOURCE	
Somerville ROW	In park, sidewalk or road adjacent to curb	Somerville GIS	
Slope	Less than 5%	NOAA LIDAR	Γ
Soil Type	Hydrologic soil type A or B, C acceptable	NRCS Web Soil Survey Tool	
Water, Sewer, Drain	3.5 feet clearance	Somerville GIS	ı
Buildings	7 feet clearance	Somerville GIS	L
Trees	10 feet clearance	Somerville GIS	L
Parking Meters	5 feet clearance	Somerville GIS	
Sidewalk	At least 4 feet wide	Somerville GIS	
Railroad	25 feet clearance	MassGIS	
Driveway/curb cut	5-foot clearance	GIS not available, orthophoto imagery used where possible	
Crosswalks/sidewall ramps	5-foot clearance	GIS not available, orthophoto imagery used where possible	
Underground utilities (other than sewer and drain)	3.5-foot clearance	GIS not available	
Groundwater	At least 7 feet below ground	GIS not available	

GSI TYPE	SITING PARAMETERS
Rain Garden	In a public space (park or existing green space) adjacent to impervious area
Planter Box	Sidewalk width: At least 9 feet
Curb Bumpout	 Parking Lane present (restrict width to the width of parking spot) 2-way streets with at least 26 ft combined width
	16 feet of pavement clearance for Emergency Vehicles
Subsurface Trench	Available footprint and drainage, but not enough space for either bumpout or planter box

Steps for GSI Candidate Siting


- Identify Areas within Public Right-of-Way
- Identify sites within the areas, and select GSI type
- Compute Annual Phosphorus Loading Reductions at candidate GSI sites
- Normally requires multiple field inspections and detailed site-by-site analyses




Automating the Process

- ArcGIS Model Builder and Python Scripting
- Utilizes:
 - Available GIS layers
 - Topographic data
 - Satellite imagery data
- Instantly generates candidate
 GSI sites across large areas

Innovations of our GSI Candidate Siting Tool

- Can quickly perform the bulk of the analysis on a sewershed-bysewershed basis, or City-wide
- Easily customizable based on siting criteria and available spatial data
- Greatly simplifies computation of annual phosphorus loading reductions at candidate GSI sites
- Creation of public outreach maps showing GSI candidate siting locations

Public Outreach

Tool: Green Infrastructure

Description: Built systems that mimic natural systems and helps improve stormwater runoff and may help reduce flooding

Flood Mitigation

Somewhat Effective

Water Quality

 Highly effective for areas tributary to GI

Advantages

- Mimics natural processes
- · Provides green space and cooling
- · Added aesthetics
- · Adds value to the neighborhood
- Provides water quality benefits

Limitations

- Limited suitable locations in dense urban environments
- Modest flood reduction
- High maintenance
- · Possible existing utility conflict
- Loss of parking spaces and sidewalk space

Color Code:

Flood Mitigation

Water Quality

Combined Sewage Management

Examples of Available Tools:

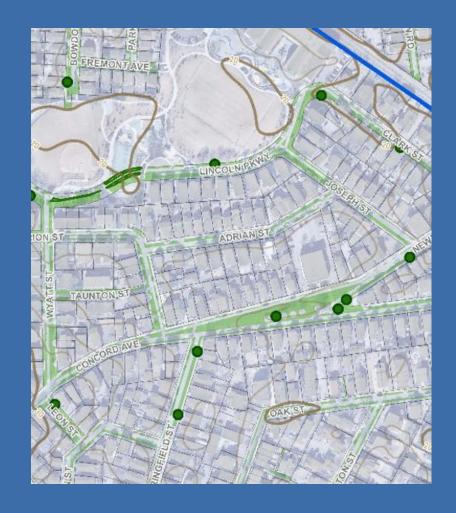
Increase Pipe Size

Green Infrastructure

Sewer Separation

Stormwater Storage Tank

New Catch Basins



Combined Sewage Storage Tank

Success of the Application

- Reduces the time and effort required to perform a preliminary GSI Siting Analysis
- Takes available and relevant spatial data as input, simplifying the analysis and reducing the required field work
- Can be customized for different GSI Siting criteria
- Could be adapted and scale to use for other siting analyses

Potential Improvements

- Ability for the tool to select BMPs, and handle missing GIS data layers (image recognition for driveways, etc.)
- Automate Drainage Area
 Delineation
- Calculate Phosphorus Loading

Looking Forward

- Applications of this toolbox for other infrastructure types and municipal assets
- Improving the tool for even more detailed and costeffective GSI siting
- How would you use this? Any other applications?

Summary

- GSI known to bring many community benefits and water quality improvements
- Traditional siting approach is challenging, time-consuming, and costly
- Development of a toolbox to automate the process and perform preliminary desktop analysis
- Potentially adaptable/scalable for other use cases and infrastructure types

Let's Connect!

Michael Hanley Dewberry Staff Engineer

Lucica Hiller
City of Somerville, MA
Stormwater Program
Manager

David Bedoya, PhD, PE Dewberry Senior Associate and Market Segment Leader

Peter Garvey, PE
Dewberry
Vice President and
Business Unit Manager

Green Stormwater Infrastructure Candidate Location Siting Application

City of Somerville, Massachusetts

Michael Hanley, Lucica Hiller, David Bedoya