

Full-Scale MABR Experience – Case Studies of Process Intensification

NEWEA 2023

Jean Gagnon, P.Eng.

1/24/2023

MABR Overview North Toronto WWTP

04 Hespeler WWTP Spernal WWTP

ZeeLung MABR Technology Overview

ZeeLung* MABR Simple, sustainable, process intensification

» Process intensification

Up to 50% more treatment capacity in existing tank volumes

» Process resilience

Resilience to upset conditions

» Simple solution

Installed in existing tanks, no civil works, fast implementation

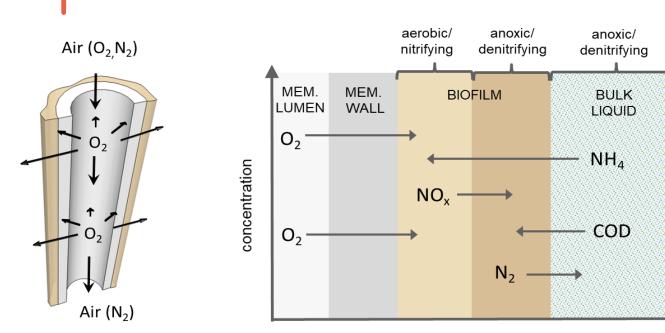
» Energy Savings

Up to 50% less energy

0

MABR Value Process intensification

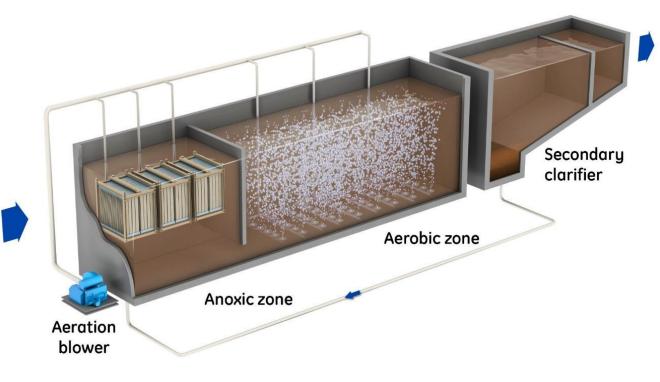
Upgrade for capacity expansion and/or NH_4/TN removal


Footprint-constrained or expensive construction

Fast or phased implementation

VP Amplifiers

- a) High energy cost (>\$0.15 kWh)
- b) GHG monetization
- c) Tank geometry(L:W ratio >2, shallow)


What is MABR?

distance from attachment surface

For more information on the unique properties of counterdiffusional biofilms see Downing and Nerenberg (2008) Applied Microbiology and Biotechnology, 81:153–162 Mediasupported biofilm with built-in O₂ supply.

 Counterdiffusional biofilm with "magical" properties

ZeeLung cassettes are installed in the bioreactor

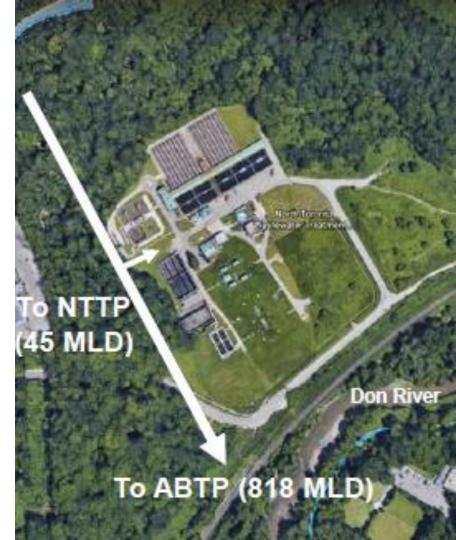
Increased biomass inventory in existing volume enables nutrient removal & capacity expansion

MABR Application Guidelines

Good Fit	Evaluate	Not a Good Fit
Capacity increase up to 50%	Capacity increase > 50%	Greenfield
Nitrogen removal		Only BOD removal
Create room for Bio-P		Water reuse
Alternatives require new construction	Alternatives don't require new construction	
Project implementation in phases		
Energy/GHG driver		
Resilience – ammonia load variations, peak trimming		
Tank geometry		

ZeeLung MABR Case Studies

Full-scale plants in operation, 3 in operation for >2 years



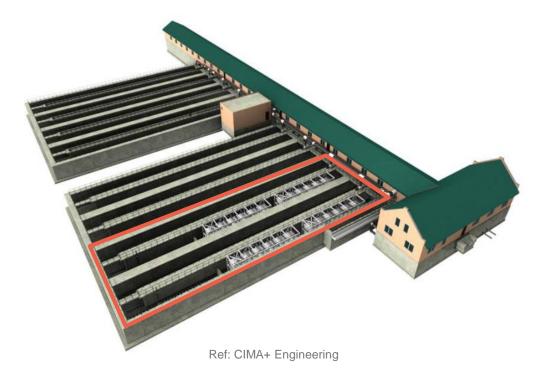
Technology demonstrations

North Toronto WWTP City of Toronto

North Toronto, Ontario, Canada Capacity Upgrade

- » Existing CAS plant
- » 45.5 MLD rated capacity, currently operates at 18.5 MLD
- Restore treatment capacity, provide high level of nitrification
- » Evaluate innovative technologies for energy consumption and enhanced treatment

North Toronto ZeeLung Business Case


MABR Expansion to 45.5 MLD

- Capital cost of \$10.3 M
- Annual energy cost (\$0.14/kWh) of \$500k
- 20-year NPV \$17.4 M

CAS Expansion to 45.5 MLD

- Capital cost of \$25.8 M
- Annual energy cost (\$0.14/kWh) of \$860k
- 20-year NPV \$37.8 M

ZeeLung Technology Demonstration

- » 20 ZeeLung cassettes installed in bioreactors 1 and 2
- » 11.4 MLD ¼ of full plant rated capacity
- » Independent MLSS Can compare with adjacent conventional sludge lines
- » Demonstrate nitrification and energy savings

Hespeler WWTP Region of Waterloo

Hespeler WWTP Ontario, Canada

- » Existing CAS plant
- Requires upgrade to treat more load and nitrify yearround

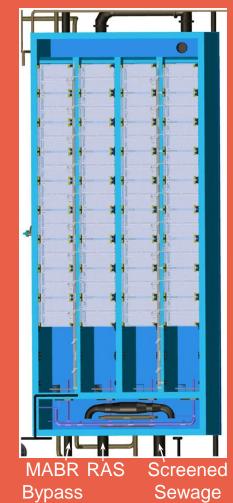
Hespeler ZeeLung Business Case

Extended Aeration Expansion

MABR Expansion

- » CAPEX half of CAS (\$12 M vs. \$25 M for 13.5 MLD
- » Footprint savings
- » > 30% aeration energy savings

Ref: Stantec Engineering


Hespeler MABR Design

Unique Aspects

- » Scale Largest full-scale MABR plant in North America w/ 36 cassettes
- » Process Design Ammonia removal by ZeeLung; No MLSS nitrification credit in winter
- » Implementation Purpose-built tanks to minimize disruption during construction
- » Procurement Competitively bid pre-selection
- » Design Considerations:
 - Headloss

 \mathbf{O}

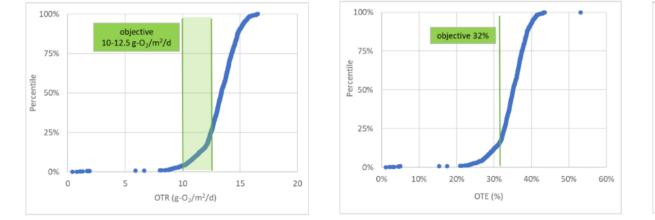
- Supplemental mixing
- Testing flexibility flow routing, instrumentation
- Future expansions

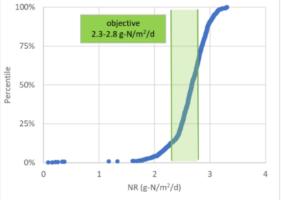
Purpose-built MABR Tanks

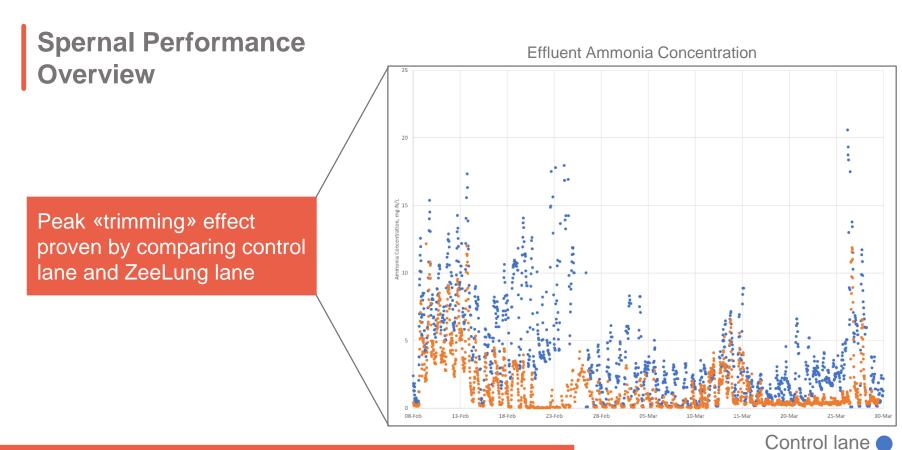
Spernal WWTP Severn Trent Water

Spernal Severn Trent Water, UK

- » 5,800 m³/d, 10,500 PE_{COD-120}
- » Start-up: Nov. 2020
- » Project drivers:
 - Test MABR technology for enhanced ammonia and TN removal
- » 5x ZeeLung cassettes
- » All ancillaries in a 10 ft container
- » 3 days for installation






Spernal Performance - KPIs

Target KPI's OTE: 32% OTR: 10 – 12.5 g-O₂/d/m²

 $oldsymbol{0}$

ZeeLung treats roughly 9-13% of influent ammonia

ZeeLung lane

THANK YOU!

QUESTIONS?

Jean Gagnon, P.Eng. jean.gagnon@veolia.com