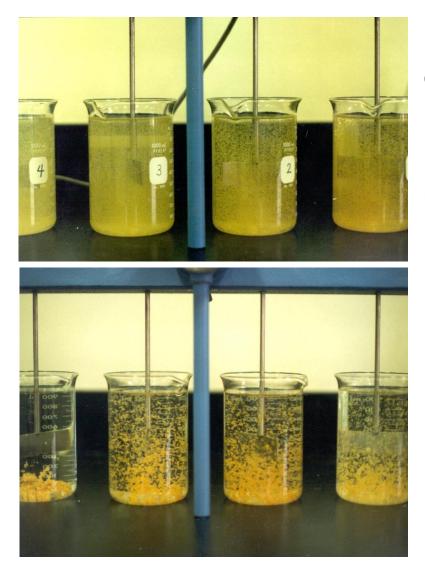
Coagulant/Polymer 101: Fundamentals of Thickening and Dewatering

Yong Kim, Ph.D. UGSI Solutions, Inc. Vineland, NJ

NEWEA 2023 Annual Conference Boston, MA, 1/22 – 1/25



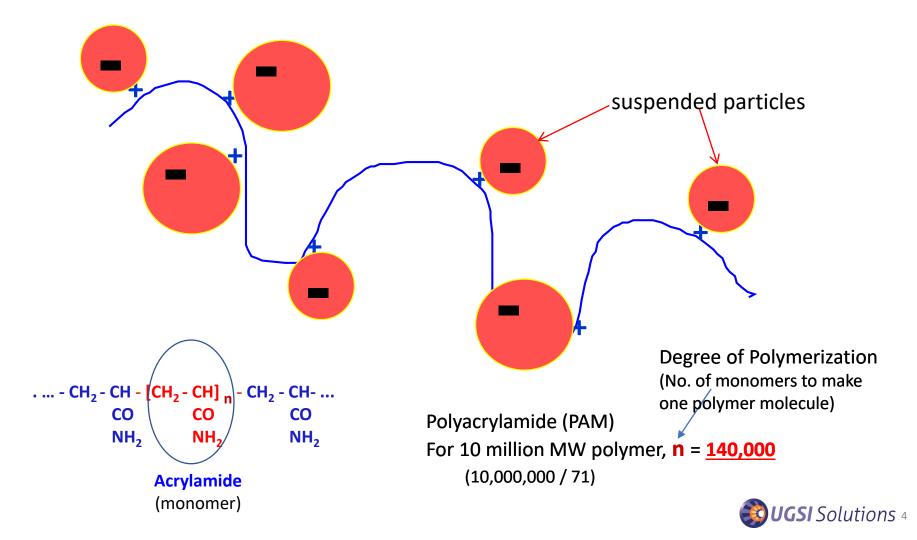
Presentation Overview

- 1. Basic Chemistry
 - Coagulation and Flocculation
 - Molecular weight, Active content, Polymer type and size
 - Handling and storage
 - Viscosity of polymer solution
- 2. Science of Polymer Activation
 - Effect of make-up or dilution water
 - Two-stage mixing
 - Residence time of mix chamber
- 3. Case Studies
 - Neshaminy Water Treatment Plant, Oakford, PA
 - F. Wayne Hill WRC, Gwinnett County, GA
- 4. Summary

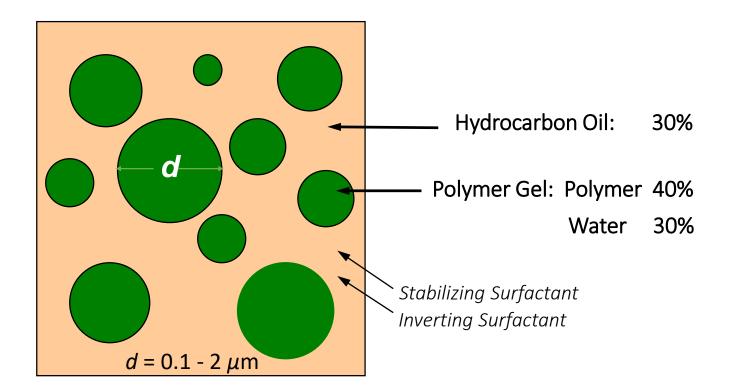
Coagulation and Flocculation

Coagulation

- Double-layer compression (charge neutralization)
- Enmeshment (sweep coagulation)
- Clay suspension + Ferric chloride (40 120 ppm)


Flocculation

- Polymer Bridging
- Clay suspension + Ferric chloride + Polymer (< 1 ppm)



Flocculation - Bridging by Long-chain Polymer Molecules

Extended <u>cationic</u> polymer molecule attracts negatively-charged particles.

Configuration of Emulsion Polymer (40% active)

Dry polymer particles: 0.1 - 2 mm

<u>Specific gravity</u> difference between hydrocarbon oil and polymer gels

Storage of Emulsion Polymer

Separation (stratification) * Drum (Tote) Mixer * Recirculation Pump Μ **Separated Oil** Settled Out **Polymer Gels**

- Moisture Intrusion
 - * Drum (Tank) Dryer

Handling & Storage

Shelf Life:

- Emulsion: 6 months, un-opened drum/tote
- Dry: up to 3 years, un-opened bag
- Polymer solution: depends on concentration, water quality

Storage Temperature: 40 F - 90 F

- Do not allow emulsion to freeze
- Once frozen, thaw in heated area and mix well

Handling

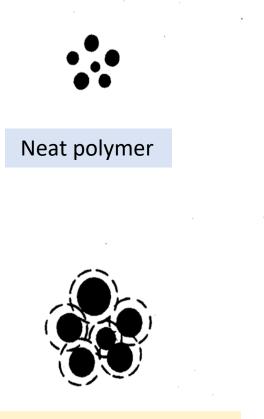
- Wear latex gloves and eye protection
- Minimize exposing to air, avoid dusting (dry polymer)
- Don't try to clean spilled polymer with water
 - Use absorbents (vermiculite, sawdust, paper towel)
- Always consult SDS

Physical Forms of HMW Polymers

Dry Polymer

- Cationic, anionic, non-ionic
- Molecular weight: up to 10 M (cationic), up to 20 M (anionic, non-ionic)
- up to 90% active
- Polymer particle size: 0.1 2 mm

Emulsion Polymer

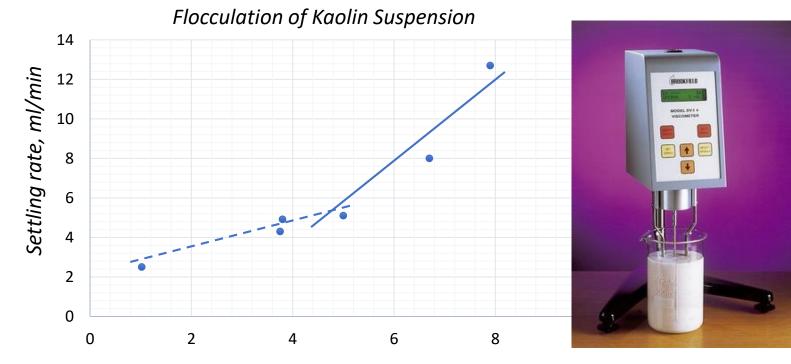

- Cationic, anionic, non-ionic
- Molecular weight: up to 10 M (cationic), up to 20 M (anionic, non-ionic)
- 30 60% active (40% most common)
- Polymer gel size: <u>0.1 2 μm</u>

Solution Polymer (Mannich)

- Cationic only
- Molecular weight: up to 10 M
- 4 6% active
- Limited usage

Three Forms of Polymer Solutions

(A) Fisheyes due to poor initial wetting


(B) Ideal polymer chains by <u>two-stage</u> mixing

(C) Broken polymer chains by <u>conventional</u> batch mixing

Viscosity – Indicator of Polymer Solution Efficiency

Viscosity of Polymer Solution and Settling Rate Higher Viscosities Accelerate Settling Rate

Intrinsic viscosity of polymer solution

Sakaguchi, K.; Nagase, K., Bull. Chem. Soc. Japan, 39, p.88 (1966)

Effect of Dilution Water Quality

Polymer supplier data sheet provides a starting point for viscosity critical factor for polymer efficiency

Table of Properties - PRAESTOL® Cationic Polymers (Emulsion)

PRAESTOL POLYMER GRADE	CATIONIC CHARGE	ACTIVE CONTENT	DENSITY (GR/ML)	PRODUCT VISCOSITY (CP)	SOLUTION VISCOSITY 1% IN DIST. WATER ⁽¹⁾ (CP)	SOLUTION VISOCITY 1.0% in 10% NaCI-Brine ⁽²⁾ (CP)	FREEZING POINT (°C)	EFFECTIVE pH RANGE
K105	Low	30%	1 04	<4000	>5000	>2000	-15	1-10
K110FL	Low	35%	1.03	<4000	>3000	>1000	-15	1-10
K120L	Low-Medium	40%	1.03	<4000	>7000	>500	-15	1-10
K226FLX	Medium	29%	1.03	<4500	>8000	>400	-15	1-10
K111	Medium	40%	1.03	<4000	>7000	>500	-15	1-10
K122L	High	43%	1.04	<4000	>9000	>300	-15	1-10
K128L	High	43%	1.04	<4500	>9000	>900	-15	1-10
K132L	High	35%	1.01	<5500	>8000	>300	-15	1-10
K133L	High	44%	1.05	<4000	>8000	>150	-15	1-13

Solenis, Inc.

Effect of Dilution Water on Polymer Activation

<u>Ionic strength (Hardness)</u>: multi-valent ion hinders polymer activation

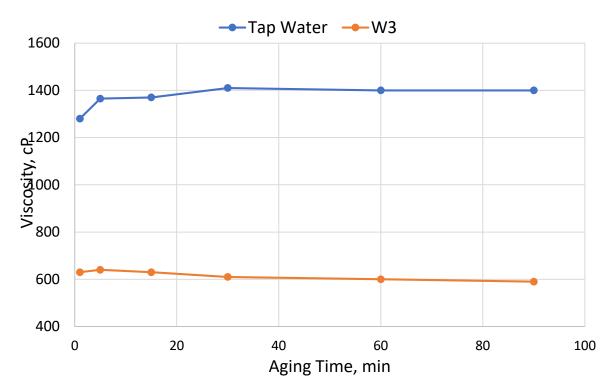
- Soft water helps polymer molecules fully-extend faster
- Hardness over 400 ppm may need softener

Oxidizer (chlorine): chlorine attacks/breaks polymer chains

- Should be less than 3 4 ppm
- Caution in using reclaimed water for polymer mixing
 - Negative impact on aging (maturing)

<u>**Temperature**</u>*: higher temperature, better polymer activation

- Water below 40 °F may need water heater
- Water over 100 °F may damage polymer chains


Suspended Solids/ Turbidity/ TDS:

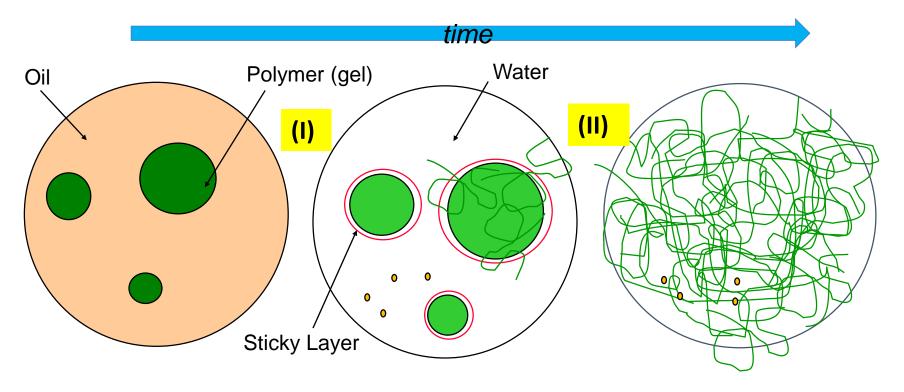
- In-line strainer recommended
- Caution in using reclaimed water for polymer mixing

Use of Tap Water vs Reclaimed Water

Polymer solution in 600 mL beakers, 500 rpm for 20 min W3 from Landis Sewerage Authority, Vineland, NJ

Cationic Clarifloc C-9545, 0.5%

- Viscosity of polymer solution with reclaimed water: significantly lower
- Polymer solution with reclaimed water: degraded over aging

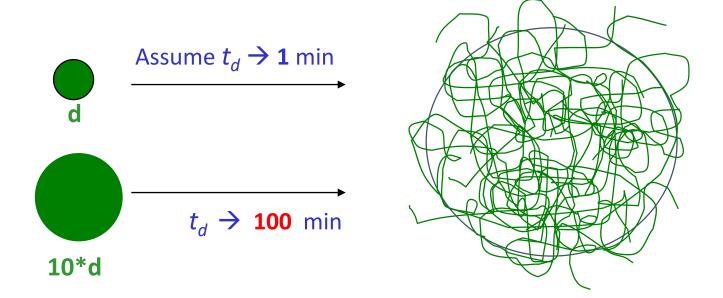


Polymer Activation (Mixing, Dissolution)

(I) Initial Wetting (Inversion)
Sticky layer formed
High-energy mixing -> No fisheyes
Most Critical Stage - <u>Brief</u>

(II) Dissolution

Reptation* or Uncoiling Low-energy mixing -> No damage to polymer Longer Residence Time required



* <u>de Gennes, P.G., J. Chem. Phys., 55, 572 (1971)</u>

Why Initial High-Energy Mixing is So Critical?

Polymer dissolution time, $t_d \sim (\text{diameter})^2$ Tanaka (1979)*

Initial high-energy mixing \rightarrow <u>No fisheye</u> formation \rightarrow Shorter mixing_time

* Tanaka, T., Fillmore, D.J., J. Chem. Phys., 70 (3), 1214 (1979)

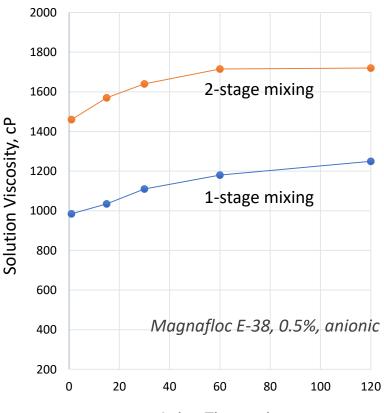
(1) Two-Stage Mixing in mix chamber

higher energy mixing \rightarrow low energy mixing

SNF POLYDYNE

SOLENIS[®]

There are a number of commercially available automatic feed systems that provide in-line mechanical mixing. The best units of this type feature initial high energy mixing (>1000 rpm) for a short time (<15 sec) to achieve good dispersion of the product into water. This is followed by lower energy mixing (<400 rpm) for a longer period of time (10-20 min) and aging for an additional 10-20 minutes to achieve complete polymer dissolution. Best practice is to use these in-line dilution systems followed by a mixing/aging tank fitted with high/low level probes to refill the tank. The optimum concentration in the mixing/aging tank is 0.5 percent, and in no case should the initial concentration of polymer be less than 0.25 percent for best results.


Mixing Effect on Polymer Activation

Very HMW anionic polymer solution (prepared in 600 mL beakers)

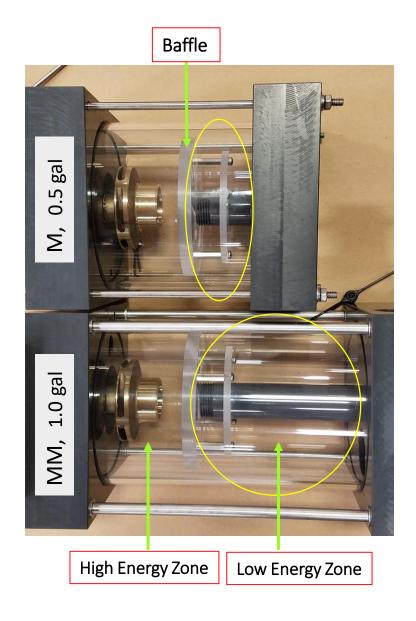
- 1-stage mixing: 500 rpm, 20 min
- 2-stage mixing: 1200 rpm, 0.5 min followed by 300 rpm, 20 min

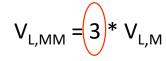
<u>Two-stage mixing</u> results in polymer solution of much better quality

- * High energy first: prevent fisheye formation
- * Low energy followed: minimize polymer damage

Aging Time, min

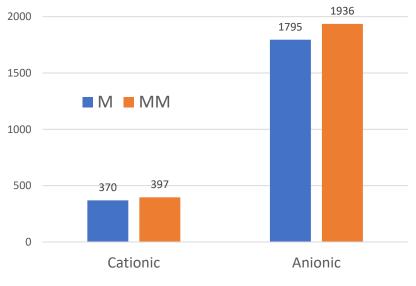
(2) Residence Time of Low Energy Mixing Zone


CLARIFLOC[®] WE-1181 POLYMER


PDS-NA-Praestol Cationic Polymers

There are a number of commercially available automatic feed systems that provide in-line mechanical mixing. The best units of this type feature initial high energy mixing (>1000 rpm) for a short time (<15 sed) to achieve good dispersion of the product into water. This is followed by lower energy mixing (<400 rpm) for a longer period of time (10-20 min) and aging for an additional 10-20 minutes to achieve complete polymer dissolution. Best practice is to use these in-line dilution systems followed by a mixing/aging tank fitted with high/low level probes to refill the tank. The optimum concentration in the mixing/aging tank is 0.5 percent, and in no case should the initial concentration of polymer be less than 0.25 percent for best re UGSI Solutions

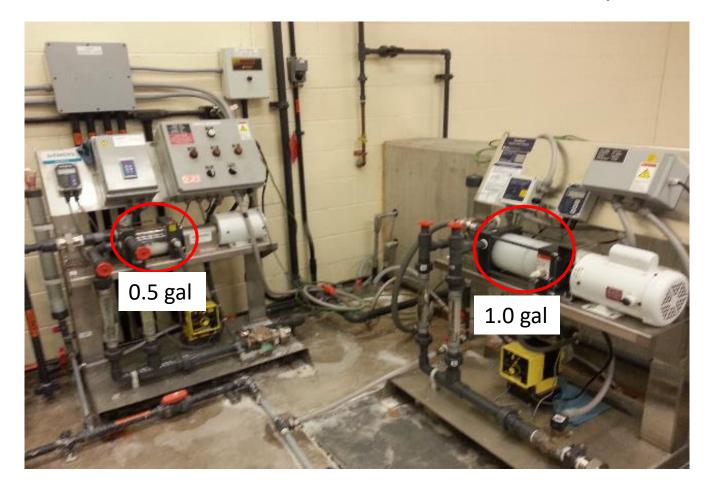
Effect of Residence Time in Mix Chamber

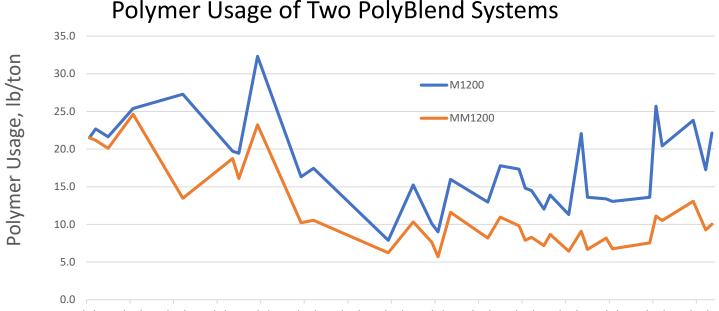


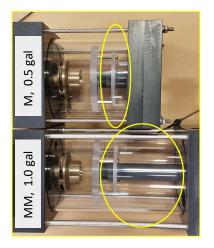
Volume of low-energy zone: V_L

Effect of Residence Time in Mix Chamber (0.5% polymer solution viscosity, cP)

Case Study: Emulsion Polymer System Neshaminy Water Treatment Plant, PA


- Located Northeast Philadelphia
- Operating capacity: 16 MGD
- Population served: 40,000
- <u>Anionic HMW emulsion polymer</u> used for dewatering alumcarbon sludge with two 2-M belt filter presses (K-S)


Performance Comparison of Two Mix Chambers Praestol A3040L- Anionic, Linear Emulsion Polymer


Existing Polymer System Siemens M1200-D10AA (2011) New Polymer System UGSI MM1200-D10AA (2016)

Impact of Residence Time of Low-Energy Mix Zone Neshaminy Water Treatment Plant, PA

2/9/16 2/16/16 2/23/16 3/1/16 3/8/16 3/15/16 3/22/16 3/29/16 4/5/16 4/12/16 4/19/16 4/26/16 5/3/16 5/10/16 5/17/16

Test Date

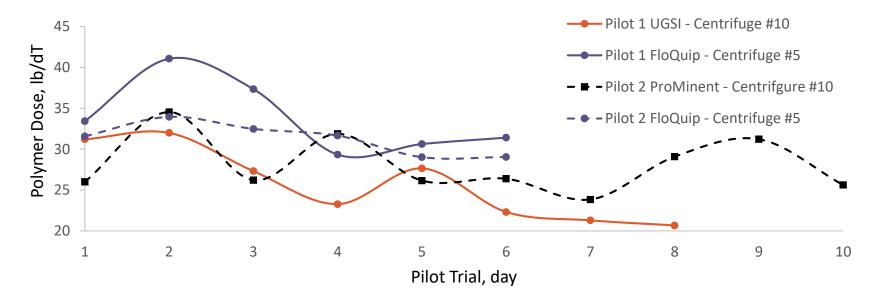
- Side-by-Side Trial from Feb to May 2016
- Polymer savings > 30%
- Sludge throughput increased by 10%
- Cake solids improved marginally from 22% to 23%

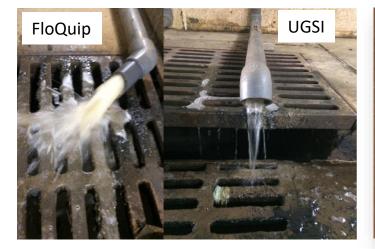
Third Party Study: Emulsion Polymer System F. Wayne Hill WRC, Gwinnett County, GA

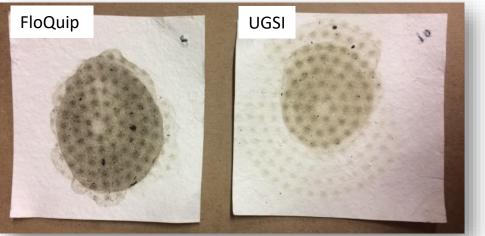
- Design capacity: 60 MGD
- Annual cost of polymer is significant (\$1.2 million)
 - Thickening ~ \$400,000 (RDT)
 - Dewatering ~ \$800,000 (Centrifuge)
- SNF/Polydyne Clarifloc SE-873: Cationic, branched

Courtesy - Jacobs Engineering and Gwinnett County

Three Polymer Systems for Pilot Trials Optimum feed concentration: 0.5% - 0.7%






FloQuip EA70P One-stage mixing 3,450 rpm UGSI MM2400-P30AB Two-stage mixing 3,450 rpm ProMix L6000-30P Three-stage mixing 1,725 rpm

Courtesy - Jacobs Engineering and Gwinnett County

Polymer Dose during Each Pilot Test

Courtesy - Jacobs Engineering and Gwinnett County

Trial results demonstrate that UGSI two-stage mixing provides significant polymer savings vs. FloQuip

Test	Polymer Blending Unit & Centrifuge	Average Polymer Dose (lb/dT)	Centrifuge Sludge Feed Flow Range (gpm)	Average Dry Cake Solids, TS (%)	Average Centrate TSS (mg/L)	Optimum Conc. Polymer Solution (%)
Pilot 1	PolyBlend 2-Stage	25.7	100 - 180	20.4	184.4	0.45 - 0.50
	FloQuip 1-Stage	33.9	100 - 200	21.5	193.5	0.70
Pilot 2	ProMix 3-Stage	28.0	100 - 180	20.1	190.6	0.50
	FloQuip 1-Stage	31.3	100 - 200	21.7	183.0	0.70

- PolyBlend[®] MM: **25% less** polymer dosage, lower centrate TSS than FloQuip.
- ProMix[®] L: **10% less** polymer, higher centrate TSS than FloQuip.
- PolyBlend[®] MM is expected to provide an **annual savings of \$200,000** for dewatering only.

Courtesy - Jacobs Engineering and Gwinnett County

Summary

- Good quality dilution water yields to more efficient polymer solution
- Polymer activation
 - <u>Two-stage mixing</u>: very high-energy mixing at the moment of initial wetting (MOIW) is critical to prevent fisheye formation, followed by low-energy mixing to minimize damaging polymer chain
 - <u>Sufficient residence time of low-energy mixing stage is required to</u> achieve fully dissolved homogeneous solution
 - Selection of mechanical or non-mechanical mixing system
- Case Studies
 - Neshaminy WTP Sufficient residence time
 - FWHWRC (WWTP) Two-stage mixing

Thank You Any Questions?

ykim@UGSIcorp.com

