Comparison of Struvite and Brushite Recovery: Model-based Technical and Economic Evaluation and Case Studies

NEWEA 2023 Annual Conference & Exhibit

Ostara Pearl®

Sara Arabi, PhD, PE, BCEE

Jan 24, 2023

Outline

Outline

Background

- Modeling and Cost Comparison
- CalPrexTM Feasibility Studies
- Visual MINTEQ Modeling for P Recovery
- Summary

Background - P Recovery

Background

- Phosphorus (P) Recovery can be implemented in different stages of treatment, from the liquid to the sludge phase, and also from sludge post-treatment.
- Close to 90% P removal from the sidestream P load is achievable

Brushite - Source: NRU

Struvite - Source: NuReSys

Background - P Recovery

Background

- P recovery is achieved by precipitation/crystallization.
- The product is in the form of calcium phosphate or magnesium ammonium phosphate hexahydrate/MAP (struvite).
- Struvite crystallization is one of the current leading technologies for P recovery.
- Brushite recovery is a newer technology

 Struvite: pK_{sp} (25°C): 13.26
 Taylor et al. (1963)

 $Ksp = -\log ([Mg^{+2}][NH_4^+] [PO_4^{-3}])$ Stumm and Morgan (1981)

 Brushite: pK_{sp} (25°C): 6.6
 Stumm and Morgan (1981)

 $K_{sp} = -\log ([Ca^{+2}] [HPO_4^{-2}])$

Modeling of P Recovery Processes

Background

- In the past, predicting P recovery product yield relied on pilot testing and empirical analysis.
- Recent advances in simulators better account for biomass impacts on chemistry, kinetic limitations, and surface chemistry.
- Digester chemistry evaluations are improved and whole plant models more accurately predict P recovery
- Allows for investigation of a broader number of P-recovery scenarios, improved comparison of P-recovery alternatives, and optimization of P-recovery processes.

BioWin - EnviroSim

Modeling-based Comparison for Brushite and Struvite Recovery

Modeling of P Recovery Processes

Modeling

- Develop a comparative economic and technical assessment of the two most common P-recovery options of struvite and brushite.
- For a 20 MGD WRRF and typical medium strength influent wastewater
- Compared the model with full-scale data and technology providers' design basis.

Modeling - Method

Modeling

- Modeling evaluation was completed in two steps.
- Step 1: a plant model was setup to demonstrate that the model is able to predict P-recovery from an existing facility.
- Step 2: A "mock" plant model was setup to compare struvite and brushite recovery.
- Step 1- Confirmed that the model is capable of predicting P recovery reasonably well for struvite recovery
- For brushite recovery, comparison of the model output with the technology provider design basis was conducted.

Modeling

Modeling

Parameter	Average Value
Flow (MGD)	20
COD (mg/L)	507
BOD₅ (mg/L)	240
рН	7.5
TKN (mg-N/L)	42.5
TP (mg-P/L)	5.7
TSS (mg/L)	230
Ca (mg/L)	87
Mg (mg/L)	46
Ammonia (mg-N/L)	27
Alkalinity (meq/L)	4.8

Comparison of Brushite and Struvite Recovery Brushite Recovery Struvite Recovery

Modeling

 Mg/P and Ca/P ratios for struvite and brushite recovery are similar to the values reported in the literature based on full-scale and pilot-plant studies

Parameter	Brushite Recovery	Struvite Recovery		
Acid Phase Digester				
HRT	1.2 days			
Operating temperature	20 °C			
Soluble P	362 mg/L			
рН	4.3			
VSS Destruction	29%			
TS	3.80%			
P release	36%			
P-Re	elease Tank			
Soluble P		96 mg-P/L		
Мд		92 mg/L		
Ammonia		41 mg-N/L		
Supernatant to P recovery				
Soluble P	363 mg/L	197 mg-P/L		
рН	4.3	7		
Мд	112 mg/L	11 mg/L		
Ammonia	401 mg/L	980 mg-N/L		
Са	160 mg/L	15 mg/L		
P Reco	overy Reactor			
рН	5.7	8.9		
Ammonia	397 mg/L	394 mg/L		
Effluent Soluble P	58 mg/L	31 mg/L		
P Recovered	218 lb/d	256 lb/d		
Chemical demand (Molar Ratio)	Ca:P = 1	Mg:P = 1		

Results: Cost Comparison

Results

Process	Struvite Recovery	Brushite Recovery
CAPEX	\$12,161,000	\$9,159,00
Annual OPEX	\$757,000	\$566,000
Annual Revenue	\$35,000	\$49,000
Annual mass of P _{removed} (Ib)	114,763	110,957
Annualized Cost without Product Revenue	\$1,745,000	\$1,313,000
Annualized Cost with Product Revenue	\$1,709,000	\$1,274,000
\$/Ib P _{removed} without Product Revenue	\$15.2	\$11.8
\$/Ib P _{removed} with Product Revenue	\$14.9	\$11.4

- Brushite recovery has a lower capital cost and is cheaper to operate (the cost of acid phase digester not included)
- Brushite recovery is slightly more cost effective, but this is sensitive to product or offtake value

Results: Sensitivity Analysis

Results

Mode details : S. Arabi, E. Evans , M. Benisch, and C, Bye, Comparison of Struvite and Brushite Recovery: Model Based Technical and Economic Evaluation and Sensitivity Analysis, Proceedings of WEFTEC 2020.

Source: CNP

Case Studies: Feasibility of Brushite Recovery/Sequestration

Case Study 1 – Facility Background

Case Study 1

- Facility in central Colorado and is currently under design for expansion to 6 MGD.
- The average influent TP concentration is 7.9 mg/L
- Existing liquid treatment processes is based on an oxidationditch system.
- Historically used ferric sulfide for improvement of dewatering

ATAD: Autothermal thermophilic Aerobic Digestion

Case study 1 – Proposed Improvements

- Brushite recovery is proposed instead of struvite recovery given the low pH of the ATAD sludge.
- Modified CalPrex[™] system is proposed

Case study 1 – Testing

- ATAD/SNDR samples were taken and tested in the lab by Thermal Process System
- Tested for the proposed solution (acidification, phosphorus release, dewatering and phosphorus capture with brushite crystallization)
- Compared with ferric sulfide and polymer addition.
- Lab testing indicates over 90% soluble P removal using the proposed solution.

Case Study 1-Testing

Parameter	Proposed Solution	Current Practice	
	Value		
	SNDR Sludge		
Total Solids (%)	2.7	7	
рН	7.3	3	
TP (mg/L)	3,55	54	
SP (mg/L)	1,75	57	
	Acidification		
H ₂ SO ₄ (50%)	0.6 ml/100 ml		
	265 lb/dry ton		
Fer	ric Sulfate Addition		
Ferric sulfate (42%)		0.7/100 ml	
	769 lb/dry ton		
I	Polymer Addition		
EM640LOB Polymer	11 ml/100 ml	29 /100 ml	
(0.5%)	53.4 lb/dry ton 141 lb/dry ton		
Gravity Dewatering			
Filtrate Ortho-P	2,203	153	
Brushite Formation			
Calcium Hydroxide	0.334 g		
	249 lb/dry ton		
Filtrate Ortho-P	50 mg/L		
Ca:P Ratio	1.35		

Photos provided by Thermal Process Systems

Case Study 1 - Process Modeling

Parameter	Model Predicted Value	Modified CalPrex TM	
ATAD/SNDR effluent	, marc	1	
Flow (MGD)		0.02	
Ammonia (mg/L)		263	
TP (mg/L)	800 (14	44 lbs/day)	
SP (mg/L)	600 (101 lbs/day)		
Sulfuric Acid addition (gpd)	55	30	
Caustic addition (gpd) (50%)	0	0	
Brushite Reactor			
Effluent SP (mg/L)	53	50	
Ca:P Ratio (Lime addition)	1.4	1.4	
pH	6.4		
Recovered P (1b/d)	71	82	
P Capture %	87%	90%	
Brushite Production (lb/d)	406	475	

Case Study 1 – Cost Estimate

Case Study 1

Item	Existing Practice	P Recovery with brushite		
CAPEX*	\$0	\$2,091,700		
OPEX **	\$587,500	\$213,800		
NPW	\$14,468,00	\$7,357,700		
Dewatering Chemical Cost				
H ₂ SO ₄ (50%)		\$44/dry ton		
Polymer	\$167/dry ton	\$64/dry ton		
Ferric sulfate	\$188/dry ton			
Calcium hydroxide ***		\$25/dry ton		
Total Chemical Cost	\$350/dry ton	\$133/dry ton		

* includes brushite drying; ** OPEX includes chemical cost, polymer cost, and sludge hauling cost; *** based on 249 Ib/dry ton

Mode details : S. Arabi, T. Gulliver, C. Bye, M. Tabanpour, and J. Wippo, Brushite Recovery from Autothermal Thermophilic Aerobic Digestion (ATAD) Sludge to Improve Dewatering Characteristics, Proceedings of WEFTEC 2021.

Case Study 2

Case Study 2

Facility in central Colorado with rated capacity of 13 MGD

Case Study 2 – Proposed Improvements

- Conversion of sideatream tanks to anaerobic tanks (A2O process)
- Using existing infrastructure for P recovery
- One of the two existing small digesters to be used as acid phase digester
- Existing lime silo
- Existing gravity thickener
- Process modeling for brushite recovery for WAS only and combined sludge

Case Study 2 – Process Modeling

Case Study 2

Stantec

23

Case Study 2- Mass Balance

Visual MINTEQ Modeling

VISUAL MINTEQ Modeling

- Chemical equilibrium model for calculation of metal speciation, solubility equilibria, equilibrium of solved and dissolved chemicals in aqueous system (Gustafsson, 2008).
- Visual MINTEQ has been used for struvite recovery studies (bench scale testing and/or synthetic wastewater)
- Visual MINTEQ used for brushite precipitation in anaerobic digester effluent and compares the results with BioWin and XRD analysis.

Bench scale Testing and VISUAL MINTEQ Modeling

- Debye–Huckel method for activity correction
- Precipitates employed in the model include struvite, bobierrite, newberyite, monetite, brushite, monetite (DCP), MgCO₃, calcite, vivianite, strengite, and ferrous sulfide.
- Sample 2: Ca/P : 1.5
- Sample 3: Ca/P : 2.5
- Sample 4: Ca/P : 3.5

Parameter	Unit	Sample 1
Ammonia	mg/L	1,346
Orthophosphate	mg/L	230
Total Mg	mg/L	97
Total Ca	mg/L	326
Total Fe	mg/L	95
Alkalinity	mg/L as	3,300
	CaCO ₃	
рН		7.27
Mg/Ca, calculated	mole/mole	0.6

XRD Analysis

Parameter	Quantitative Crystalline Phase Analysis (wt%)
Sample 1	Quartz (SiO ₂): 6.7% Struvite (NH ₄ MgPO ₄ .6H ₂ O): 21.2% Albite (NaAlSi ₃ O ₈): 3.5% Rutile (TiO ₂): 1.2% Anatase: 0.4% Amorphous content: 33%
Sample 2	Quartz (SiO ₂): 14.8% Albite (NaAlSi ₃ O ₈): 9.9% Rutile (TiO ₂): 1.7% Anatase: 0.6% Amorphous content: 27%
Sample 3	Quartz (SiO ₂): 17.3% Albite (NaAlSi ₃ O ₈): 8% Rutile (TiO ₂): 2.0% Anatase: 1.3% Iron (Fe): 6.4% Amorphous content: 35%
Sample 4	Quartz (SiO ₂): 12% Albite (NaAlSi ₃ O ₈): 5% Rutile (TiO ₂): 2.4% Anatase: 0.6% Amorphous content: 20%

Visual MINTEQ

- For Samples 1-4, Visual MINTEQ predicts calcite being in equilibrium with CaHPO₄ (DCP), and vivianite. Struvite present for Sample 1.
- Visual MINTEQ confirmed that the calcium phosphate mass increased with additional of Ca.
- Results of Visual MINTEQ was consistent with XRD analysis indicating that Struvite was predicted in Sample 1 but not in Sample 2-4.

Comparison with BioWin

Visual MINTEQ

Parameter	BioWin Model Output	Actual Data	
Samp	le 1		
Orthophosphate (mg/L)	206	230	
Ammonia (mg/L)	1,100	1,346	
рН	7.07	7.2	
Alkalinity (mg/L CaCO ₃)	3,900	3,300	
Total Ca (mg/L)	298	326	
Total Magnesium	109	97	
Total Iron (mg/L)	0	95	
Sample 2 –	Ca/P: 1.5		
Orthophosphate (mg/L)	57	78	
Ortho-P Removal Efficiency %	72%	66%	
Sample 3 –	Ca/P: 2.5		
Orthophosphate (mg/L)	16	62	
Ortho-P Removal Efficiency %	92%	73%	
Sample 4- Ca/P: 3.5			
Orthophosphate (mg/L)	9	48	
Ortho-P Removal Efficiency %	96%	79%	

Ca and Mg in AD

BioWin Modeling

Visual MINTEQ

Stantec

Modeling Comparison

Parameter	Visual MINTEQ Predicted OP Reduction %	BioWin Predicted OP Reduction %	Actual OP Reduction %
Sample 2	49%	72%	66%
Sample 3	56%	92%	73%
Sample 4	63%	96%	79%

Parameter	Major Solids Species - XRD	Major Solids Species - BioWin	Major Solids Species – Visual MINTEQ
Sample 1	Calcite, struvite, amorphous content, Albite, Rutile, Anatase, amorphous content (amorphous calcium phosphate)	Brushite Struvite	Stregnite, CaHPO ₄ (DCP), Calcite, magnetite, struvite, Ca ₃ (PO ₄) ₂ (beta)
Sample 2	Calcite, amorphous content, Albite, Rutile, Anatase, amorphous content (amorphous calcium phosphate)	Brushite Struvite	Stregnite, CaHPO ₄ (DCP), Calcite, magnetite, Ca ₃ (PO ₄) ₂ (am2), Ca ₃ (PO ₄) ₂ (beta)
Sample 3	Calcite, amorphous content, Albite, Rutile, Anatase, amorphous content (amorphous calcium phosphate))	Brushite Struvite	Stregnite, CaHPO ₄ (DCP), Calcite, magnetite, Ca ₃ (PO ₄) ₂ (am2), Ca ₃ (PO ₄) ₂ (beta)
Sample 4	Calcite, amorphous content, Albite, Rutile, Anatase, amorphous content (amorphous calcium phosphate)	Brushite	Stregnite, CaHPO ₄ (DCP), Calcite, magnetite, Ca ₃ (PO ₄) ₂ (am2), Ca ₃ (PO ₄) ₂ (beta)

Summary

- Modeling tools compared reasonably well with the actual data and technology provider design basis.
 - While both brushite and struvite recovery are viable P-recovery options, for the testing conditions modeled in this paper, brushite recovery appears to be more cost effective (\$/lb P_{removed}).
 - Final choice between these two products mainly depends on process requirements and final application of the recovered product.
 - Visual MINTEQ can be helpful in predicting the precipitation of brushite and other phosphate-bearing minerals (not a kinetic model)
 - Default parameters available in BioWin provide a reasonable prediction of phosphorus removal performance for process engineering purposes for brushite recovery/sequestration

Thank you

Sara Arabi, PhD, PE, BCEE Sara.Arabi@stantec.com

