

Utilization and Practical Approach of Ammonia-Based Aeration Control (ABAC) at Bonnybrook Wastewater Treatment Plant, Canada

Stantec Consulting Ltd.: Parnian Izadi Julian Xheko, Nisa Jayathilake, Danelle Bishoff, Mehran Andalib, Robert Walker, Angelos Yiannou

INTRODUCTION

Parnian Izadi, PhD

Post-Doctoral fellow Stantec Consulting Ltd. York University

Contact: parnian.izadi@stantec.com

Agenda

- 1. Plant Background
- 2. ABAC Introduction
- 3. Case Study 1
- 4. Case Study 2
- 5. Case Study 3
- 6. Conclusions and Next Steps

City of Calgary Plant Background

City of Calgary Plant Background

4

5

Secondary Treatment C - Trains 9 & 10

S

Bonnybrook WWTP Monthly Approval Limits

Parameter	Limit	
	\leq 15 mg/L monthly arithmetic mean of	
CDOD	daily composite sample	
тее	≤ 20 mg/L monthly arithmetic mean of	
100	daily composite sample	
Dhacabaruc	\leq 1.0 mg/L monthly arithmetic mean of	
FIIOSPIIOLUS	daily composite sample	
Ammonia-Nitrogon (Octobor 1 to June 20)	≤ 10 mg/L monthly arithmetic mean of	
Annionia-Mitrogen (October 1 to Julie 30)	daily composite sample	
Ammonia-Nitrogon (July 1 to Sontombor 30)	≤ 5 mg/L monthly arithmetic mean of	
Annionia-Mitrogen (July 1 to September 30)	daily composite sample	
Facal Caliform Counts	≤ 200 MPN or CFU per 100 mL/monthly	
recar comorn counts	geometric mean of daily grab samples	

 \bigcirc

Nitrification Basics

- Nitrification is a microbial process where ammonia is oxidized to nitrite and then nitrate
- Nitrification DO supplementation is between 50 to 60% of the total supplied oxygen demand.

Nitrification (Aerobic Zone)

- DO
- SRT
- Nutrient

 \bigcirc

Ammonia Based Aeration Control Introduction

ABAC Introduction

ABAC Control Strategies

	Description	Advantages	Disadvantages
Feedback	 Measured process variable that is input to the controller. 	 Does not require a model of the controlled system. 	 An error must exist before a control action can be taken.
	Control action is based on difference of measured and desired value.		 Slow reactions to control actions.
Feedforward	 Measures a process disturbance and uses a model to predict the behavior of the controlled system. 	 Fast response to ammonium load peaks. Adequate for conditions where no "above the limit" discharge is 	 More complexity due to more sensors. Requires an accurate process model description.
		allowed.	 Low control authority in dry weather flow and ammonium peaks.

Feedforward Control

Initial DO setpoint based on influent loadings to bioreactor

Ammonia Load $\left(\frac{Ton}{d}\right) = Influent Flow (MGD)x Influent NH3 concentration <math>\left(\frac{Ton}{MG}\right)$

- Summer and Winter DO setpoint Matrices developed based on operational experience
- Base DO setpoint adjusted every 10 minutes to avoid system hunting

്

 \triangleleft

≥

്പ

0

EEDF

LL

Feedforward Control DO Setpoints

Ammonia Load $\left(\frac{Ton}{d}\right) = Influent Flow (MGD)x Influent NH3 concentration <math>\left(\frac{Ton}{MG}\right)$

Primary Effluent	DO (mg/L)						
Ammonium Loads (Ton/d)	Cell 5*	Cell 6	Cell 7	Cell 8	Cell 9	Cell 10	
Summer Mode DO Setpoir	nts						
<0.5	1.50	1.50	1.20	1.00	0.50	0.50	
=>0.5 and <1	1.70	1.70	1.40	1.10	0.75	0.50	
=>1and <1.5	1.90	1.90	1.70	1.30	0.90	0.50	
=>1.5 and <1.75	2.00	2.00	2.00	1.50	1.00	0.50	
=>1.75 and <2	2.25	2.25	2.25	1.75	1.25	0.75	
=> 2	2.50	2.50	2.50	2.25	1.50	1.50	

Ш Ш Ц

Feedback Control

- The aim of feedback control to maintain an ammonia concentration setpoint in Cell 8
- Cell 8 setpoint chosen to achieve 1-2 mg/L in secondary effluent
- The deviation of the measured ammonia concentration in Cell 8 to the setpoint determines the amount of trim to be applied
- A maximum trim of 0.5 mg/L can be applied to Cells 5 to 8
- Cells 9 and 10 are limited by minimum air valve positions and a maximum DO of 3.0 mg/L.
- DO trim is continuously updated by the ABAC programming.

Sequencing and Implementation Methodology

Case 1: Existing ABAC logic applied in Secondary C. Feedforward-feedback control based on the ammonia loading and Cell 8 Ammonia setpoint. Reviewed for control and energy savings available Case 2: BioWin® model of Feedforward-feedback logic as described, based on existing hourly plant data and available ammonia profile. Existing model calibration and optimization Case 3: Calibrated BioWin[®] model used to develop new feedforward control logic dependent on microbial kinetics to maintain ammonia setpoint of desired cell. Reviewed for control and additional energy savings \bigcirc

ABAC Case Study 1

Case Study 1

Case 1: ABAC Testing Bioreactor 10

	Aeration	Influent	Influent	Average PE TKN Concentration (mg/L)	DO Setpoints (mg/L)				
Dates	Mode	Temperature (F)	Flow (MGD)		Cell 6	Cell 7	Cell 8	Cell 9	Cell 10
May 2 to May 9	ABAC Winter	55.58	9.47	56.6	AB amn	AC Cor nonia se	ntrolled etpoint	with Ce of 7.0 m	ell 8 ng/L
May 10 to 12	ABAC				2.5	2.5	2.5	2.0	1.5
May 13 to 15	Disabled	55.76	9.64	55.0	2.0	2.0	2.0	2.0	1.5
May 16 to May 23	ABAC Summer	55.94	8.28	51.1	AB amr (Ma	AC Cor nonia s iy 16 to (May	ntrolled etpoint 18 th) ai 19 th to	with Ce of 4.5 r nd 5.5 r 23 rd)	ell 8 ng/L ng/L
May 24 to May 28	ABAC Disabled	57.02	8.78	52.7	2.0	2.0	2.0	2.0	1.5

Case 1: Results

Case 1: Results and Savings

- ABAC summer mode: 26% process air savings/mass of ammonia-N
- ABAC winter mode: 7% process air savings/mass of ammonia-N
- Overall, ABAC control achievable 17% savings

Aeration Mode	Process Air per kg Ammonia-N (m ³ /kgNH ₃ - N)	Process air per Influent Flow (m ³ /MGD)	Power savings (MWhr)	Annual savings (US\$)
ABAC Avg.	5.7	67.4	~1136	~121k
Summer	5.1	63.2	~1738	~185k
Winter	6.4	71.9	~468	~50k
ABAC Disabled	6.9	82.5	-	-

STUDΥ

CASE

ABAC Case Study 2

Case Study 2

19

Case 2: Existing BioWin® Simulation

	424 4			FIESS FI IULI	
Controller list	Controller input/output	Controller parameters - Mul	ti-step		
 Blower Controller Air Distributor 	Select measured variable	Number of s	ettings 6		
✓ NH3 FF 1 Controller ✓ NH3 FB Controller	Measured element:	Start contro			
 DU Valve Cell 6 DO Valve Cell 7 	PC 1 to 14	A Hue	teresic 0.00		
✓ D0 Valve Cell 8 ✓ D0 Valve Cell 9	Measured variable:		teresis ju.uu		
DO Valve Cell 10	N - Ammonia (mass rate)	Output	Switching Criteria		
DU Setting Lell 6	,	DOSettingFF1:	For increasing	For decreasing	
✓ D0 Setting Cell 8	Select manipulated variable	Setting Output N - NH3:		N - NH3:	
DO Setting Cell 10	Manipulated element:	[-]	Step Switch at	Step Switch at	
✓ NH3 FF 2 Controller	User defined variable	1 1.2	[kg N/d]	[kg N/d]	
✓ NH3 FF 4 Controller	Maninulated variable:	2 1.5	1->2 1000	2 -> 1 1000	
✓ NH3 FF 5 Controller		3 2.4	2 -> 3 1250	3 -> 2 1250	
	DOSetting+1	4 2.6	3 -> 4 1500	4-> 3 1500	
		5 2.8	4 -> 5 1750	5 -> 4 1750	
		6 3	5 -> 6 2000	6 -> 5 2000	
	Controller type	Control inter	val 30.00 mi	inute(s) 👻	
Add Bemove			1		
	C Patia C PID				
Note: Unchecking a controller holds the manipulated variable at its last position	C User Defined Controller				
as no not position.	C Selector/Combiner C Air Distribution Tool				

- Existing control logic was simulated in BioWin® and BioWin Controller®
- Feedforward with Feedback trim, adjusting a floating DO setpoint at a similar time interval
- 28-day simulation was completed
- The input highlights that as the ammonia load changes the DO setpoint also changes

Case 2: Simulation Results

 \bigcirc

ABAC Case Study 3

Case Study 3

Case 3: Modified ABAC Control Logic

- Modified control logic was developed
- Controllers maintains a desired ammonia objective by considering microbial kinetics, total mass load of nitrifiers, and the incoming ammonia load

$$\frac{K_{DO}}{\left(\frac{\left(X_{AOB},\mu_{max@20},\theta^{T-20},Vol_{Aer[m3]}\right)/Y_{AOB}}{NitFac\cdot\frac{kgNH3N\,INF}{d}\cdot1000}-1\right)}-0.1$$

Case 3: Simulation Results

 \bigcirc

Conclusion and Next Steps

Next Steps

Conclusion

- ABAC has been widely applied in WWTP but not optimized
- Any advance control optimization may result in investing time, labor and possible disruption to system
- Optimized simulation yield to time and capitol savings and operation disturbance protection

Next Steps

- Program a second modified controller for testing
- Implement in Secondary D

Thank you! Discussion

