

Development of World's Largest Dual-use High-rate Primary & Wet Weather Flow Filtration Process using Floating Media

Presented by Jon Liberzon

Wetter (Not Better) Wet Weather

- Climate Change is altering precipitation patterns
 - Less snow, more rain
 - Rain events becoming wetter, longer
 - Rainfall is less predictable seasonally, geographically
 - Combined effect: # of excess WWF, CSO & SSO events increasing
- Exacerbating Factor: Aging Infrastructure & deferred maintenance

WWF Treatment - Traditional Strategies

- 1. Increase Plant Capacity to Match Peak Flows
- 2. Storage & Equalization (Tunnels/Interceptor)

3. Divert & Blend

WWF Treatment - Traditional Strategies

- 1. Increase Plant Capacity
- 2. Storage & Equalization (Tunnels/Interceptor)

Bottom line:

Storage can buy you time

but it can't catch every drop.

(Size accordingly)

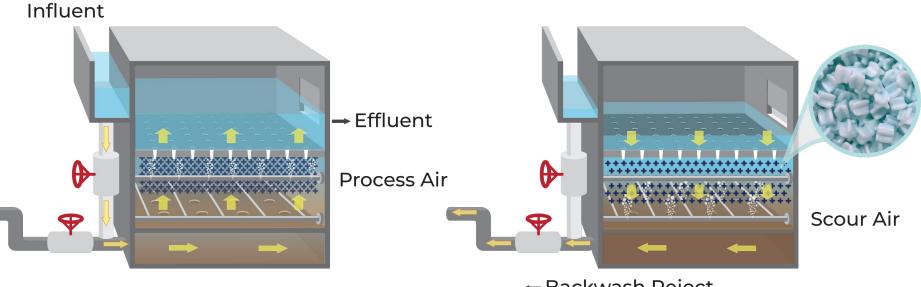
- 3. Divert & Blend
 - Only works if you can get all flows to the plant
 - Risk violating permit without auxiliary treatment
 - Blending permits may be hard to get/renew

WWF Treatment - New(er) Strategies

4. Auxiliary High-Rate Treatment

- Physical filtration to remove solids (+ particulate BOD)
- A lot of infrastructure just for rare events

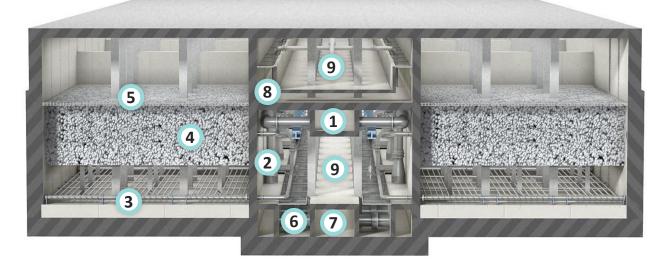
5. Dual-Use Systems: The best of both worlds


- Provides treatment for dry weather flow
- Switch feed or ramp up loading rate to manage WWF
- Still need to get flow to plant

PROTEUS High-rate (Bio)filter

Filtration

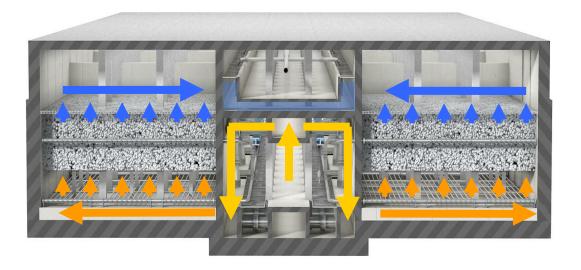
Periodic Backwash



- Backwash Reject

PROTEUS Structure

- 1 Influent Conduit
- 2 Influent Pipes
- 3 Backwashing Diffuser Pipes


- 4 Floating Media
- 5 Strainer Blocks
- 6 Backwashing Water Drain Pipes

- **7** Backwashing Water Conduit
- 8 Effluent Conduit
- 9 Piping Conduits

PROTEUS Structure

Treats Screened Raw Water Directly Without Clarifiers Up-flow Biological Aerated Filter Using Expanded Polypropylene (EPP) as floating media

Components

Concrete strainer block with topserviceable nozzles completely retains floating media

Flow distribution: Channels w/ 5" aperture or piping manifold

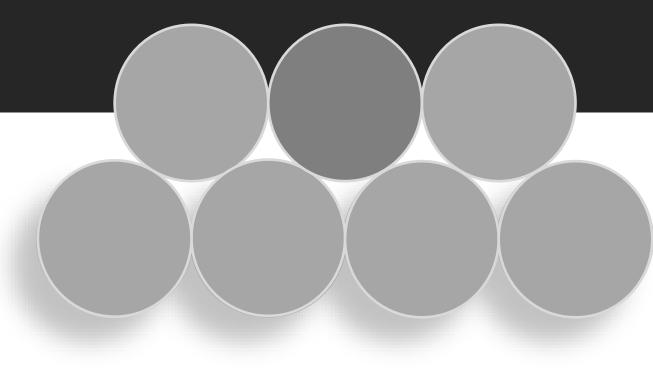
Headworks: standard ³/₄" bar screen

LEGACY MEDIA

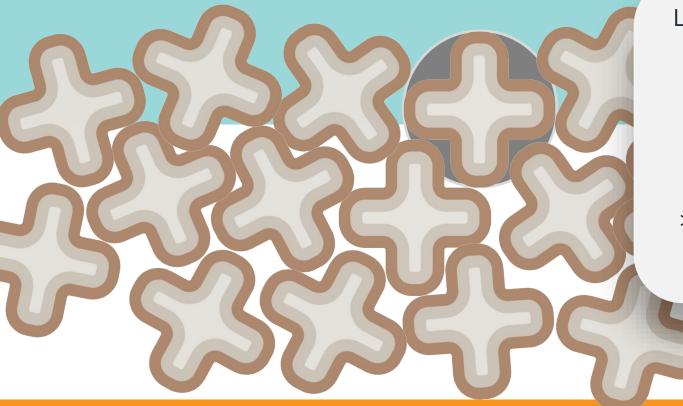
Expanded Polypropylene (EPP)

• Long lifespan

Ovoid Shape


GREAT for Secondary/Tertiary

BUT! – Can't Handle Raw Water


LEGACY MEDIA DESIGN

Ovoid Shape Not suitable for high-solids loading

NEW PROTEUS MEDIA DESIGN

Lots of space to trap & hold solids

Complex stacking

Less head loss

>50% more surface area than legacy media

NEW CROSS-SHAPED MEDIA DESIGN

02

03

High Void Fraction: 0.4

Minimizes backwash rate

• Long lifespan (>35 years)

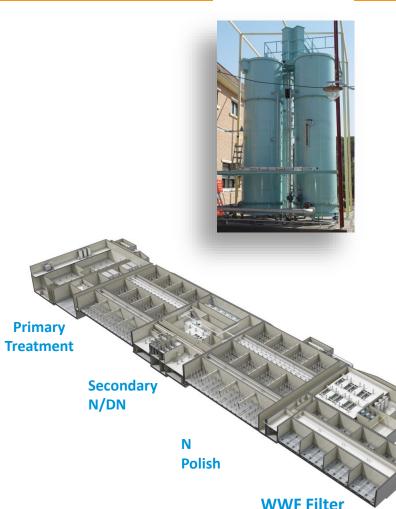
(216lb/1000 ft³)

Cost-effective

• Low head loss @ high solids

High SS Loading: >3 kg/m³ max

Made With Expanded Polypropylene


Proteus APPLICATIONS

Legacy BAF:

- Secondary Treatment & BNR
- Tertiary Nitrogen Control
- Groundwater Treatment

<u>New:</u>

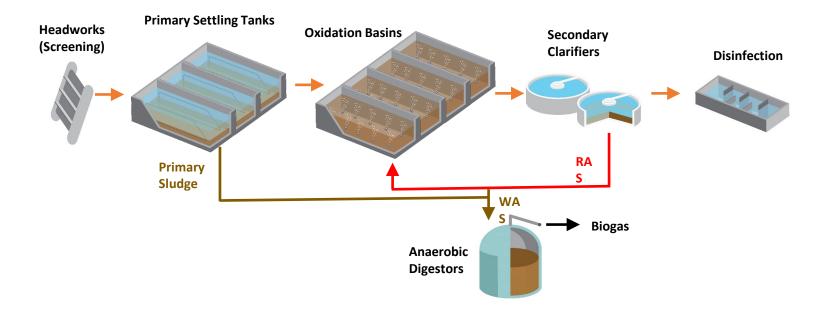
- Advanced Primary Filtration
- Wet Weather Flow & CSO Treatment

FILTER PRIMARY SOLIDS INSTEAD OF SETTLING

80% Footprint Reduction Over Primary Clarifiers

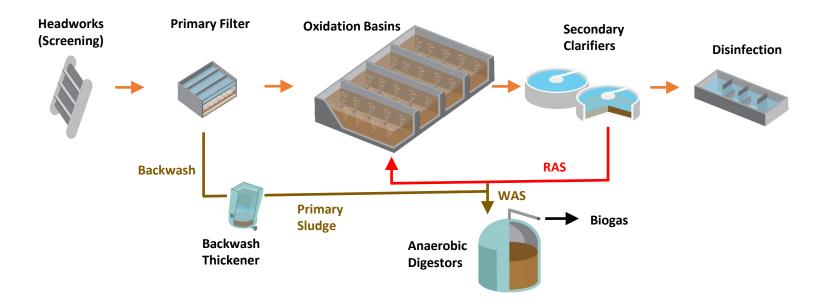
WHY ADVANCED PRIMARY FILTRATION?

CAPTURE MORE TSS

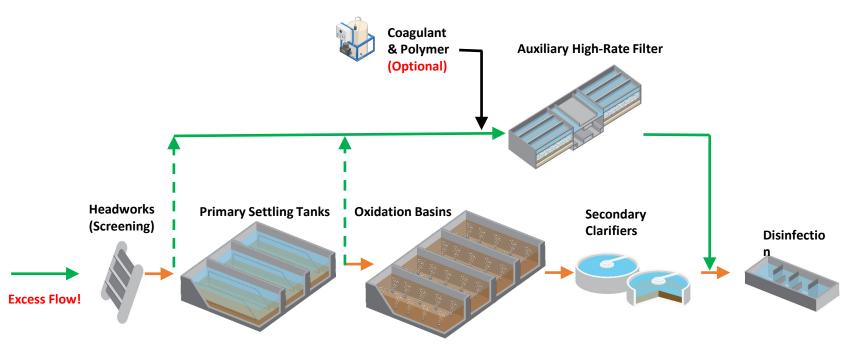

70-90% Removal Instead of 30-60% in Clarifiers

CARBON DIVERSION

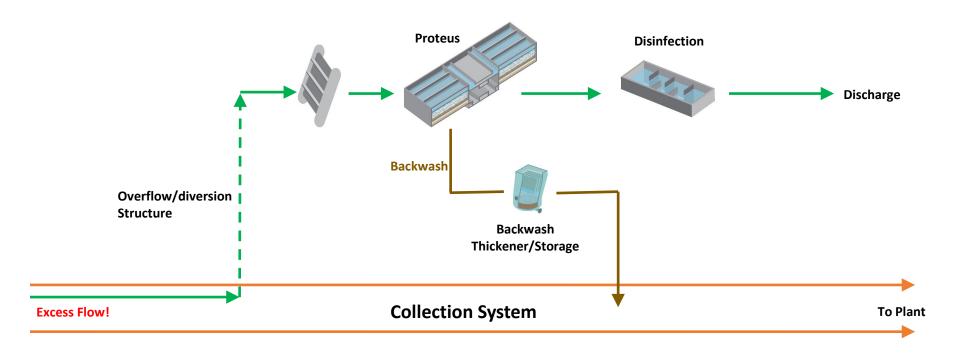
Grab More BOD Upstream of Aeration & Send To Digestors 10-25% Aeration Energy Reduction 10-25% More Secondary Treatment Capacity 20-30% Increase In Gas Production



High-Rate Filter Applications

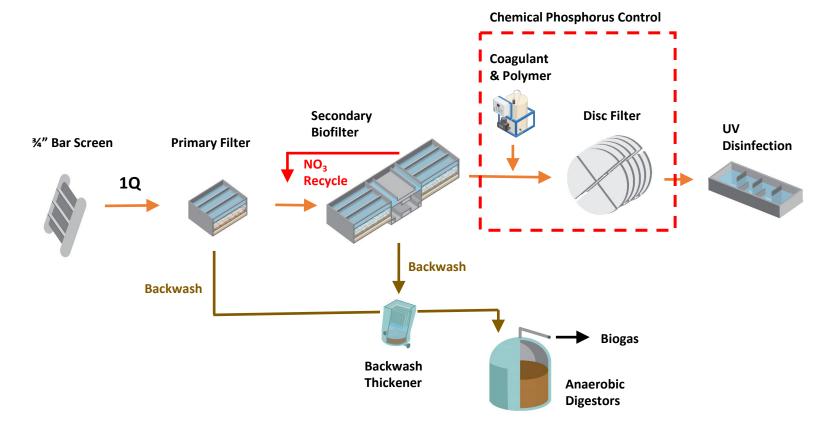


High-Rate Filter Applications - Primary

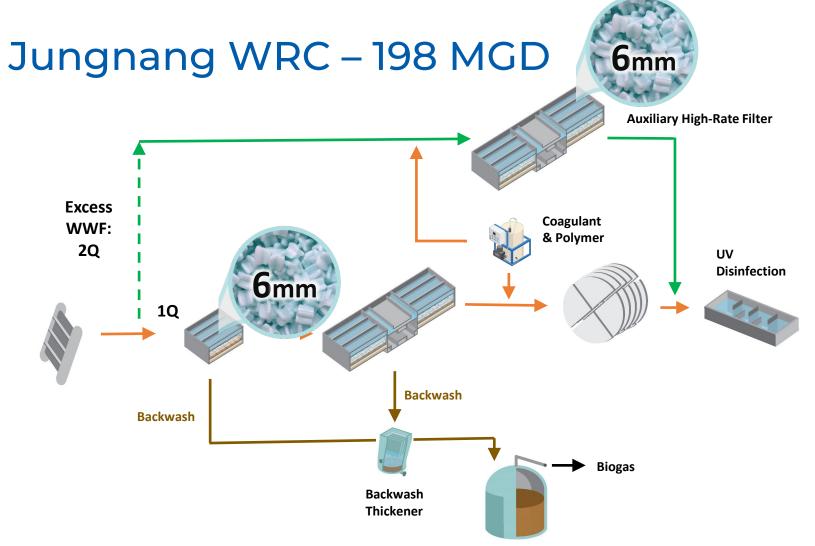


High-Rate Filter Applications – Auxiliary Wet Weather Treatment

High-Rate Filter Applications – Satellite CSO Treatment



1st FULL-SCALE INSTALLATION


- Jungnang WRF, Seoul, Korea
 - Combined sewer with low loading (Inf TSS/BOD = 102/120)
- 66 MGD Primary Filter
- 132 MGD WWF Filter, in parallel with Primary Filter
- Commissioned 2017

Jungnang WRC – 66MGD

Jungnang FILTER PERFORMANCE: 2020

		Influent (mg/L)	Effluent (mg/L)	Removal (%)
Dry Weather Primary Treatment 66 MGD	TSS Avg (Min-Max)	101 (35-236)	45 (13-95)	56%
	BOD Avg (Min-Max)	124 (42-273)	86 (21-231)	31%
Wet Weather Filtration 132 MGD	TSS Avg (Min-Max)	277 (258-297)	36 (36.0-36.3)	87%
	BOD Avg (Min-Max)	84 (34-134)	27 (15-39)	63%

FULLY SUBTERRANEAN TREATMENT SYSTEM

Can Build on top

Simplifies Odor Control

Improves Property Values & **Boosts Reinvestment**

Reclaims Public Space

JUNGNANG WRRF

JUNGNANG WRRF 66MGD PROCESS TRAIN

SEOUL, KOREA

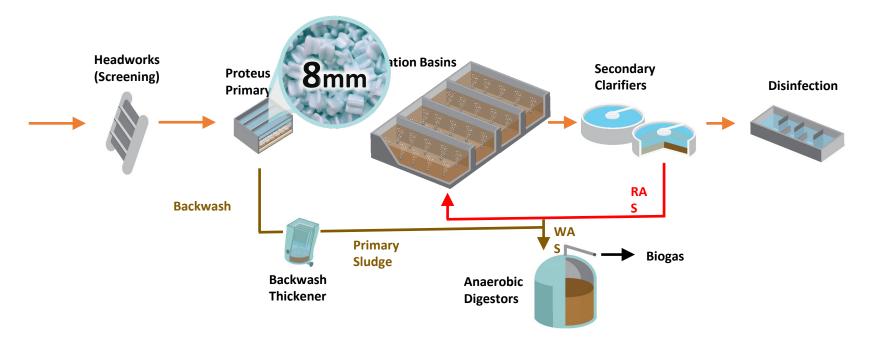
Overall Footprint Savings of 64%, while adding BNR

Simple, minimal odor control

1st DUAL-USE INSTALLATION

- Seonam WRF, Seoul, Korea
- 95 MGD Primary Filter
 - No Chemicals
- 190 MGD WWF Filter
 - Flow velocity simply increased in primary filter
 - Chemically Enhanced
- Commissioned 2020

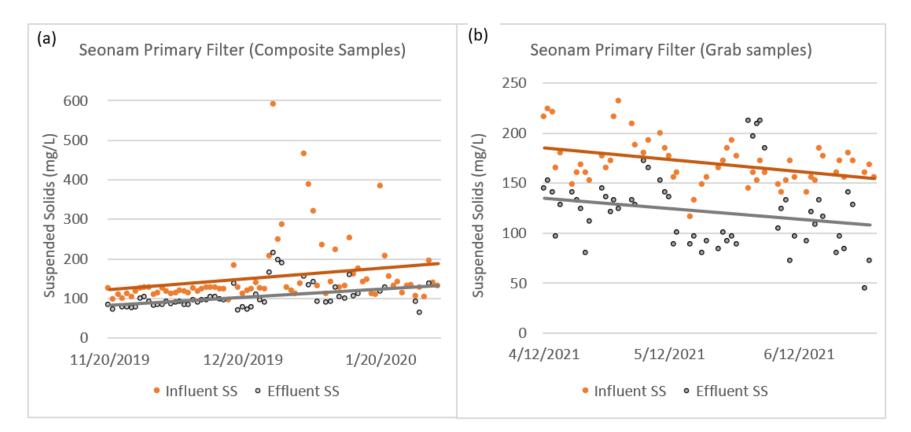
FULLY SUBTERRANEAN TREATMENT SYSTEM


Primary Filtration without Carbon Diversion

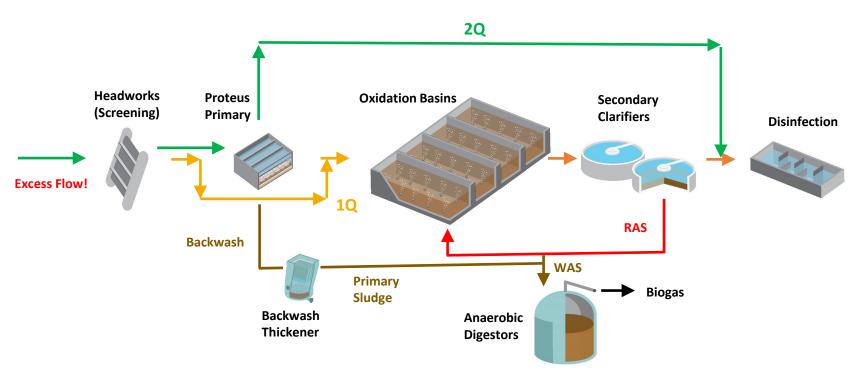
- Seonam is a denitrifying plant with *low bioavailable BOD*
- The plant wanted to **conserve as much BOD as possible**, while capturing large solids, grit, etc.
- Proteus primary filter installed with *larger 8mm media to* reduce the TSS & BOD removal rate through primaries, conserving more carbon for downstream denitrification
- WWF requires maximum BOD removal (no BNR)

→ Seonam doses PAC & polymer to *maximize TSS/BOD removal in WWF*

Seonam WRC – 95MGD



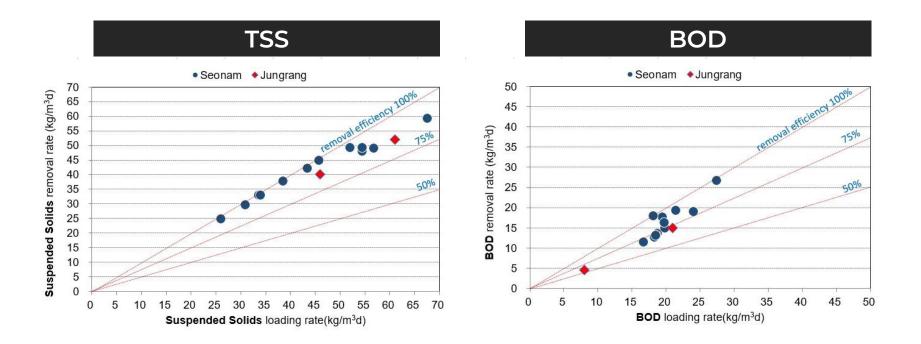
SEONAM PRIMARY FILTER PERFORMANCE: 2020



Before Turnover

After Turnover

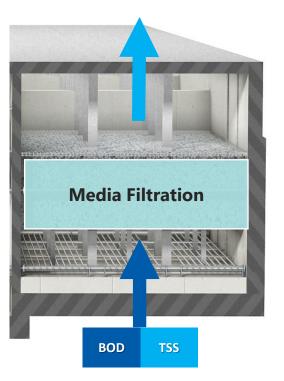
Seonam WRC – 285 MGD (Dual-Use)



2020 WET WEATHER FILTER PERFORMANCE: Seonam

Event Q (m3/d)		Influent		Effluent		Removal Efficiency	
		BOD ₅	SS	BOD ₅	SS	BOD	SS
	(113/ 4)	(mg/L)	(mg/L)	(mg/L)	(mg/L)		
1	720,000	79.8	288.0	21.6	34.8	73%	88%
2	720,000	102.3	242.0	20.7	32.8	80%	86%
3	720,000	116.7	232.0	2.8	27.2	98%	88%
4	720,000	91.5	232.0	9.2	22.0	90%	91%
5	720,000	84.4	222.0	20.6	11.4	76%	95%
6	720,000	78.0	195.0	23.9	3.6	69%	98%
7	720,000	82.8	185.0	7.5	5.4	91%	97%
8	720,000	79.2	164.0	23.2	3.0	71%	98%
9	720,000	77.1	143.0	0.4	2.4	99%	98%
10	720,000	71.1	145.0	21.8	4.1	69%	97%
11	720,000	78.9	111.0	22.4	5.3	72%	95%
12	720,000	84.0	132.0	14.4	5.4	83%	96%
Average		85.5	190.9	15.7	13.1	81%	94%
Max		116.7	288.0	23.9	34.8	99%	98%
Min		71.1	111.0	0.4	2.4	69%	86%

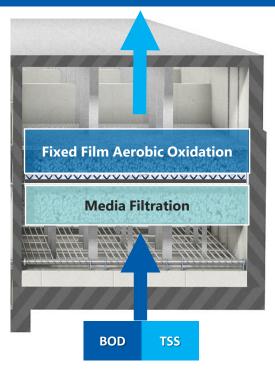
WET WEATHER FILTER PERFORMANCE: 2020 Seonam (190MGD) & Jungnang (132MGD)



6mm vs 8mm MEDIA PERFORMANCE

		6mm Removal (Jungnang)	8mm Removal (Seonam)
Dry Weather Primary	TSS	56%	32%
(no chem)	BOD	31%	25%
		N=2	N=12
Wet Weather Filtration (with chem)	TSS	87%	94%
	BOD	63%	81%

- 6mm Media: Remove more carbon in dry weather (carbon diversion)
- 8mm Media: Allow more carbon through primaries for denit
- Wet Weather (w/chem addition): Similar performance


PROTEUS+ Biological Filter

- Process air grid inside media bed
- Minimum HRT ~ 15min

Process Models:

BioWin

- Option as "Super-Primaries" (HPO, Capacity Limited)
- Increased Peaking Capacity (2-5x)

Wet-Weather Influent

Wet-Weather Influent

PROTEUS Primary Filter

- Fully anoxic media bed (no aeration)
- Developed originally to replace clarifiers
- Minimum HRT ~ 6 min
- Peaking Factor ~2x (with WWF dilution)

PRIMARY & WWF 13-MONTH PILOT

GENESEE COUNTY MICHIGAN

PHASE 1: Quantify performance at wide range of influents, simulating variable wet weather flows

PHASE 2: Stable performance with dilute Primary Effluent

PLUS: Catch a real wet weather event

3rd Party Reviewer: Dr. Glen Daigger Paper at WEFTEC 2020

PROTEUS MICHIGAN PILOT RESULTS SUMMARY FOR PLANT W/SEPARATED SEWER

Removal	Proteus Primary Filter		Proteus+ (Biological Filter)	
	Raw Water	Primary Effluent	Raw Water	Primary Effluent
TSS	78%	71%	84%	84%
Total BOD	61%	51%	81%	60%
Filtered BOD			74%	43%
COD	67%	57%	79%	58%
Fecal Coliform	51%		79%	
Chlorine Demand	70%		88%	

CONCLUSIONS

- Auxiliary high-rate filters are gaining popularity for wet weather/CSOs
 - \rightarrow Proteus proven at scales of 195 MGD and 95 MGD in Korea
- Dual-Use configurations give these systems dry-weather value
- High-rate filters achieve carbon diversion benefits in APT
 - → But, denitrifying plants may not want max TSS/BOD removal
- Proteus filters can adjust media size to customize TSS/BOD removal
- Adding chems improved TSS/BOD removal, regardless of media size
- New aerated options offer true biological treatment of WWF

THANK YOU

Jon Liberzon jl@tomorrowwater.com