

Lowell Water Utilities – SCADA Upgrades

About The Presenters

Tim Maynard

- > Technical Manager Woodard & Curran
- > 18 years experience in the design, programming and implementation of control systems in the industrial, manufacturing, food and beverage, municipal and industrial water/wastewater markets.

Evan Walsh

- Engineering Supervisor Lowell Water
- Grade 7-C Operator, 10 years assisting in Operational Support at the facility.

Lowell Water Utilities – SCADA Upgrades Agenda

- Project Overview Goals
- > Existing SCADA System Architecture
- > Proposed SCADA System Architecture
- > Remote Access Approach
- Summary and Conclusions

Lowell Water Utilities – Project Motivation

- > 3 Main Goals for the project:
 - Operational Efficiencies
 - Risk Management
 - Long Term Cost Savings

SCADA Remote Access - Efficiency

- > Real Time Access/Feedback
 - Diagnose issues before sending personnel onsite
 - Ease of maintenance tasks at remote facilities
- Enable troubleshooting when access is challenging (e.g. weather)
- > Emergency situations can be evaluated instantaneously
- > Ordinance employees can be the first line of response to reduce call-ins and overtime costs
- Integration with other software to maximize use (HACH WIMS, CMMS, etc.)

SCADA Remote Access - Risk Management

> Acceptable Risk

- False sense of security
 - Air-gapped systems still vulnerable

Security Maintenance Team (Lowell Water, MIS, & W&C)

- Three-layered support team
- Strength at all three levels

Risk Ownership

 Responsibility for accepting risk associated with Lowell's water infrastructure belongs to the Water Utility Executive Director

Centralized User Management

Managing SCADA access privileges

SCADA Remote Access - Risk Management

- Managing and operating two utilities that are physically separated
 - SCADA Manager, Maintenance Superintendent, and Operation Superintendents
- Improved operational awareness minimizes consequence of failures
 - Public health and safety
 - Environmental damage
 - Equipment cost

SCADA Remote Access - Cost Savings

> Staffing

- Operations staff can be deployed more effectively
- Reduce overtime costs and off hour call-ins
- Connect systems together eliminates redundant SCADA manager positions

Contracted Services

Support from contractors can be drastically reduced

> Hardware

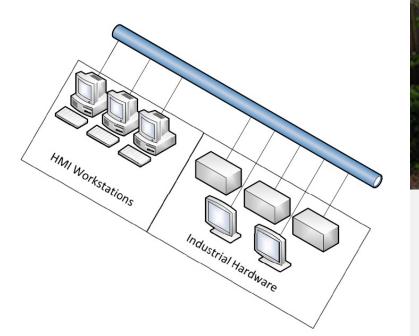
- Less expensive hardware at each node; easier to replace
- Longer lifecycle and lower cost

SCADA Definitions - Alphabet Soup

<u>Acronyms</u>

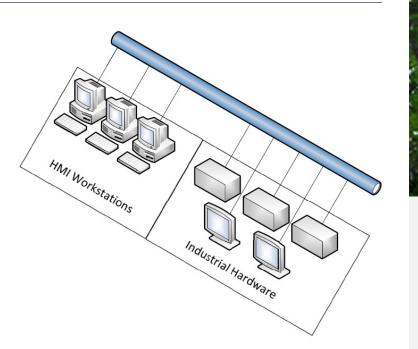
SCADA – Supervisory Control And Data Acquisition

PLC – Programmable Logic Controller 7/14/2021 HMI – Human Machine Interface

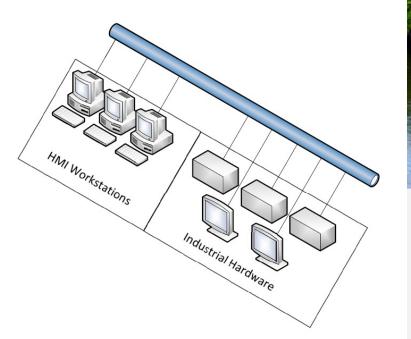

DMZ – Demilitarized Zone

Community-Health-Environment

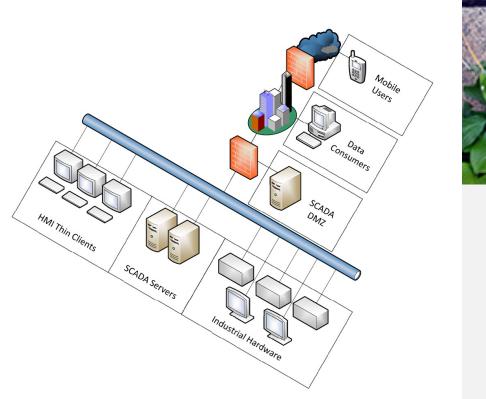
Existing SCADA Networks


- ➤ Water
 - 2 redundant SCADA nodes (development node and runtime node)
 - 3 client nodes in control room and lab
- > Wastewater
 - 2 redundant SCADA nodes (development node and runtime node)
 - 12 client nodes, at strategic locations throughout the facility

Existing SCADA Networks

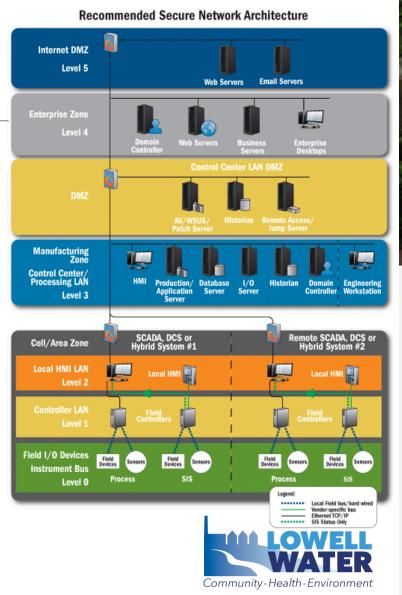

- Large Flat Networks
 Each SCADA node is a full Windows PC
 - Often an additional PC on an employee's desk
 - Update requirements
 - Hardware Cost/labor to replace
- > Software licensing is costly
- Manual Access To Data

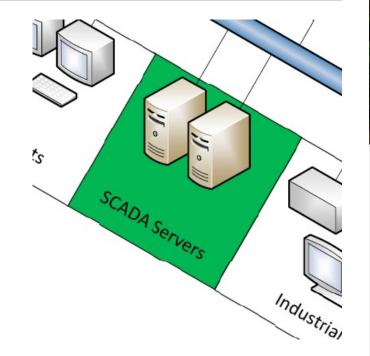
Existing SCADA Networks


- > Updates can only be done from the Development Node
 - Updates need to be manually copied to the clients
- False Sense of Security

Proposed SCADA Networks

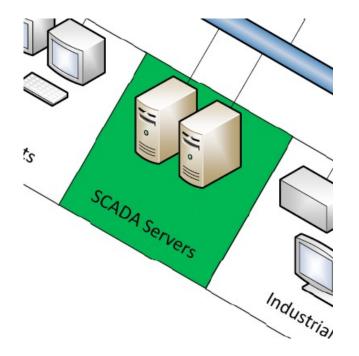
- Server/client architecture for HMIs to promote expandability and versatility
- Securely provide data to external systems (ex: CMMS)
- Facilitate access to all facilities from common resources (e.g. SCADA Manager)
- Secure remote access to facilities



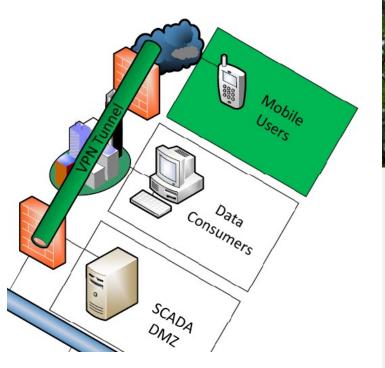

Proposed SCADA Networks Network Architecture

- The Purdue Enterprise Reference Architecture is used to define industrial networks today
- Segment network into levels and zones
- Access policies for data to traverse levels

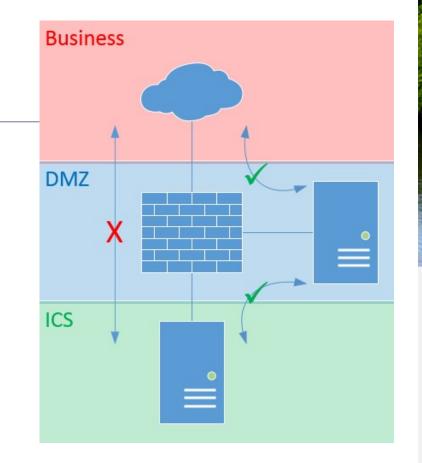
Proposed SCADA Networks – Server/Client Architecture


- Two redundant servers, located in secure locations
- Engineering workstation (not pictured) for server administration and programming
- Thin client hardware at all other current locations, including main SCADA nodes in control rooms

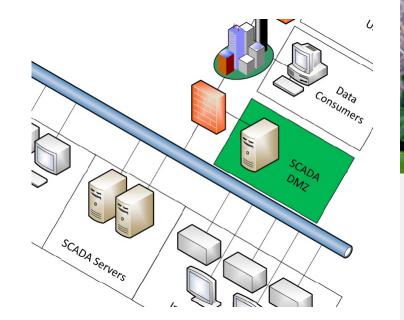
Proposed SCADA Networks – Server/Client Architecture


- Thin client hardware costs ~\$500 and operates for 4-6 years
- Server hardware operates for 8-10 years
- Does not run a native OS, so does not become obsolete
- Hardware replacement in 10 minutes, as opposed to 4-8 hours
- Lower long-term maintenance costs

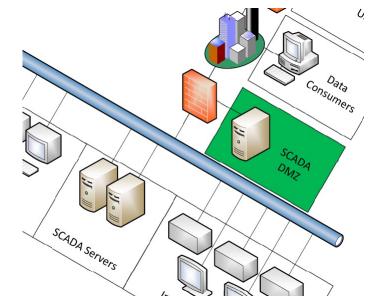
Proposed SCADA Networks - Remote Access


- DMZ & firewall facilitates secure remote access to SCADA networks
- Multifactor authentication used for added security
- Remote access privileges restricted by user requirements
- > Ability to monitor and audit system activity (accountability)
- May disconnect facility firewall and inhibit remote access without affecting SCADA operations

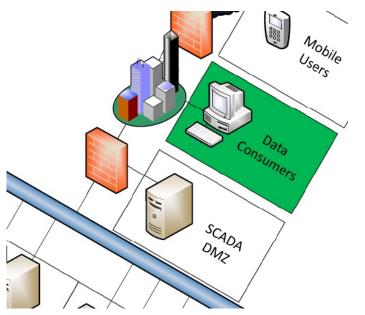
DMZ Architecture – Industry Standard


- Used to move data into and out of a secure zone of a network
- Traffic not allowed to pass directly between business and ICS networks
- Traffic must terminate in DMZ
- Hardware/software in DMZ facilitates required communication as needed

Proposed SCADA Networks - DMZ


- Robust firewall (Cisco ASA) protects SCADA network, including intrusion prevention and anti-malware capabilities
- Server(s) in DMZ can make SCADA data available elsewhere
 - Provide data to CMMS or other systems
 - External systems do not communicate directly with PLCs
 - Aggregate logs
- Server(s) in DMZ can bring in external data without exposing control to untrusted networks
 - Facilitate patching
 - $_{\circ}~$ Bring files into network

Proposed SCADA Networks – DMZ Server Functions


- WSUS Windows server role facilitates patching on ICS network
- AV Console Managed antivirus on ICS assets
- SIEM (Security Information & Events Manager) Log aggregation and analysis
- Jump Host Choke point for remote connections to ICS network
- File Transfer Manage files in/out of ICS network
- Data Connector Connection for future CMMS or other systems

Proposed SCADA Networks – City Network Access

- Users/devices/software in the City's network can access data from the SCADA system
- SCADA assets are not directly exposed to external networks
- Users in common location may access data from multiple facilities

Project Challenges/Lessons Learned

- > Work with your IT/MIS group closely
- > Technology/Regulations are constantly changing
- > Buy in from Staff changing their day to day workflow
- > Technology is not cheap...find the solution that meets your goals without breaking the bank
- > Identify other needs that can be done in parallel

Summary and Conclusions

- > Upgrade SCADA computer networks at both utilities
- > Develop architecture to support an integrated water utility
- Utilize industry standard equipment and protocols to provide secure remote access to SCADA assets
- Provide means to better integrate current City software and applications with real-time SCADA data
- Capitalize on strong in-house technical capabilities and trusted SCADA/cyber security consultant
- Realize quantifiable cost savings and operational efficiencies

Questions / Discussion

