

Hybrid Biofilter for Biosolids Odor Control

NEWEA Conference

January 24, 2022

Overview

1. Project introduction

- 2. Odor sampling completed
 - Locations
 - Sampling methods
 - Sample types
- 3. Results and technology selection

Project Introduction

- New solids dewatering facilities for Lemay and Bissell Point WWTFs in St. Louis, MO as part of project for new incinerators
- New dewatering buildings include:
 - Sludge blend wells for primary and secondary sludge
 - Centrifuges
 - Cake collection bins (from centrifuges)
 - Cake receiving bins (trucked in from offsite)
- Sampling completed Sep 9-25, 2020 to provide data for basis of design for new odor control facilities

Sampling Locations

- Existing dewatering buildings include:
 - Blended sludge wells
 - Belt filter press
 - Cake receiving bin
 - Scum concentrator

Sampling Methods

- -Grab samples:
 - Bag samples for lab analysis (1)
 - Jerome Meter (2)
- -Continuous sampling:
 - Acrulog monitors (3)

Sampling Results

Bissell Point WWTF blended sludge well Acrulog H₂S monitoring plot

Sampling Results

CAS #	Compound	Result µg/m³	MRL µg/m ³	Result ppbV	MRL ppbV
7783-06-4	Hydrogen Sulfide	120,000	14	84,000	10
463-58-1	Carbonyl Sulfide	200	25	80	10
74-93-1	Methyl Mercaptan	3,300	20	1,700	10
75-08-1	Ethyl Mercaptan	ND	25	ND	10
75-18-3	Dimethyl Sulfide	550	25	220	10
75-15-0	Carbon Disulfide	ND	16	ND	5.0
75-33-2	Isopropyl Mercaptan	ND	31	ND	10
75-66-1	tert-Butyl Mercaptan	ND	37	ND	10
107-03-9	n-Propyl Mercaptan	ND	31	ND	10
624-89-5	Ethyl Methyl Sulfide	ND	31	ND	10
110-02-1	Thiophene	ND	34	ND	10
513-44-0	Isobutyl Mercaptan	ND	37	ND	10
352-93-2	Diethyl Sulfide	ND	37	ND	10
109-79-5	n-Butyl Mercaptan	ND	37	ND	10
624-92-0	Dimethyl Disulfide	ND	19	ND	5.0
616-44-4	3-Methylthiophene	ND	40	ND	10
110-01-0	Tetrahydrothiophene	ND	36	ND	10
638-02-8	2,5-Dimethylthiophene	ND	46	ND	10
872-55-9	2-Ethylthiophene	ND	46	ND	10
110-81-6	Diethyl Disulfide	ND	25	ND	5.0

#	Field No.	Sample Description	DT	RT	
1	1	Cake Bin - Bissell	3,900	2,100	~
2	2	BFP - Bissell	11,000	5,500	
3	3	Scum - Bissell	1,200	650	
4	4	Sludge Well - Bissell	14,000	8,500	2

Bissell Point WWTF blended sludge well lab results

Sampling Results

WWTF and Sampling Location		H ₂ S Concentration (ppmv)		Odor Units (D/T)	
		Average	Peak		
Lemay WWTF	Blended sludge well	336	539	470,000	
	Belt filter press	25	84	> 600,000	
	Cake receiving bin	78	272	39,000	
Bissell Point WWTF	Blended sludge well	550	992	140,000	
	Belt filter press	41	256	110,000	
	Cake receiving bin	4.5	25	39,000	
	Scum concentrator			12,000	

Calculated Odor Loadings

Odor Control Strategy	Design	Odor Loading Parameter			
	Airflow Rate (cfm)	Average H₂S (ppmv)	Peak H₂S (ppmv)	Average Odor (D/T)	Peak Odor (D/T)
Diluted air stream: including cake receiving and truck loading bays	22,000	8	20	5,000	10,000
Concentrated air stream: not including cake receiving and truck loading bays	6,000	25	70	19,000	38,000

Bissell Point WWTF

Odor Control Strategy	Design	Odor Loading Parameter				
	Airflow Rate (cfm)	Average H₂S (ppmv)	Peak H₂S (ppmv)	Average Odor (D/T)	Peak Odor (D/T)	
Diluted air stream: including cake receiving and truck loading bays	21,000	15	25	40,000	80,000	
Concentrated air stream: not including cake receiving and truck loading bays	5,000	70	100	160,000	320,000	

Lemay WWTF

Vapor Phase Odor Control Technologies

- Wet chemical scrubbing
- Biofilters
- Biotrickling filters (BTF)
- Dry media adsorption
- Ionization

Wet Chemical Scrubbing

- Good for H₂S or ammonia removal (depending on chemical used)
- Moderate organic sulfide removal
- Smaller footprint 1-2 second contact time
- Requires chemical storage
- High O&M requirements
 - Spray nozzles
 - Recirc pumps
 - Metering pumps
 - Instrumentation
 - Hazardous chemical handling

Biofilters

- Engineered or organic media
- Good for removal of variety of odor compounds
- Large footprint 30-60 second contact time
- Requires acclimation time
- Moderate O&M requirements
 - Humidification nozzles
 - Irrigation nozzles
 - Short-circuiting (smoke testing helps)

Bio-Trickling Filters (BTFs)

- Variety of media types
- Recirculation or once-through configuration
- Typically tower orientation contact time 10-20 seconds
- Geared for H_2S removal only
- Requires acclimation time
- Moderate O&M requirements
 - Recirc pumps
 - Spray nozzles
 - Mist and grease eliminator

Dry Media (Activated Carbon)

- Variety of media types
- Good for removal of variety of odor compounds
- Relatively small footprint- contact time 3-4 seconds
- Low O&M requirements
- Possible complications
 - Moisture occupies pore spaces
 - High odor concentrations result in frequent media replacement

Ionization

- Creates free radicals, ionized air, cold plasma
- Can treat supply or exhaust air
- Very small footprint
- Inappropriate for high odor air streams
- Limited track-record
- Emits ozone
- Free radicals attack rubber-based materials

Alternatives Considered

- Only multi-stage systems due to high H₂S and odor levels
 - Biotrickling filter (BTF) followed by carbon
 - Biofilter followed by carbon
 - 3-stage chemical scrubber (acid, caustic, hypochlorite solution)
- Primary odorous compounds of concern are H_2S , organic sulfides

Alternatives Considered

- Alternatives eliminated due to expected high fenceline emissions:
 - BTF + carbon
 - Chemical Scrubber
- Which leaves....

Biofilter + carbon!

Vendor responses on design loads:

- "Due to relatively high H_2S we may be better off using a roughing stage short-EBRT BTF upstream of the biofilter. The high levels of H_2S can serve to acidify the media in a biofilter and limit its performance in deal with total odor not associated with H_2S ."
- "The H_2S loadings seem quite high and we wouldn't recommend biofilters for these applications. We would need to knock down the H_2S with a BTF before the second stage."
- "70 ppm average is too high for an engineered media biofilter really need a first stage trickling filter to rough that down."

Layered/Hybrid Biofilter

- Essentially a BTF + biofilter in one
- Two different media types in the two beds
 - Lower bed geared towards H_2S removal. Shorter EBRT (15 sec).
 - Upper bed geared towards RSCs and larger compounds.
 Longer EBRT (30 seconds).
- Each bed independently irrigated
 - Air from lower bed is very humid so don't need much irrigation in upper bed

Courtesy of Daniel Company

Next Steps

- Design brought to 30% submittal
- Project has gone out to bid (RFP for design-builder)

Thank you!

Pat Baldera,

Karl Nowak

Metropolitan St. Louis Sewer District, Lemay WWTF Becca Coyle, John McCarthy

Metropolitan St. Louis Sewer District, Bissell Point WWTF Danielle Sheahan, Jeremy Rosemann, Dave Yates, David McEwen Brown and Caldwell

Questions?

