

Design of a Treatment Process for High Nitrate Industrial Waste

Jeanette Brown, PE, BCEE, D.WRE, Dist.M. ASCE, F.WEF David Vaccari, PhD, PE, BCEE, F.ASCE Stevens Institute of Technology

PRESENTATION CONTENT

- Introduction
- Treatment Concept
- BioWin simulations
- Proposed design
- Next steps

 Many industries produce wastewater with a high nitrate-nitrogen concentration, such as,

- fertilizer,
- explosives, and
- stainless-steel manufacturing, and
- certain food processing operations

CHARACTERISTICS OF HIGH NITRATE WASTE

Depending on the industry

- Nitrate-nitrogen concentration-200 to >3000 mg/L
- Anions and cations-chloride, sulfate, calcium, sodium
- Organics-measured as COD
- Toxic compounds

- In some cases, wastes discharged directly to water bodies,

 many now have total maximum loads (TMDL) for nitrogen, so direct disposal is no longer an option

TREATMENT OPTIONS

· High nitrate wastewater can be treated by

- · Ion exchange,
- membrane filtration, and
- · electrodialysis

Problems

- expensive and
- · can result in a secondary waste stream which must be treated

Possible solution

treat the waste at a municipal WRRF

 To determine if a high nitrate waste could be treated at a municipal WRRF while meeting TN permit requirements

• To determine if a high nitrate waste could be treated at a municipal WRRF and reduce aeration requirements

- Initial design using BioWin (this presentation)
 Design optimization using numerical methods
 Proof of Concept
 - Design, construct, and optimize a small pilot system

Commercial software program

- Allows for the simulation of various physical and chemical processes used in wastewater treatment
- Commonly used for design and upgrading wastewater processes
- Used to determine design and operating parameters to achieve specific effluent requirements

Modified Ludzack-Ettinger biological nitrogen removal (BNR) process

- Most common BNR process
- Anoxic zone-denitrification
- Aerobic zone-nitrification

MODEL INPUTS AND CONSTRAINTS

WRRF DESIGN SPECIFICATIONS				
Design flow, MGD	13			
Anoxic Volume, MG	1.1			
Aerobic Volume, MG	3.3			
Clarifier SLR, lb/ft ² .d	26			
Clarifier SOR, gal/ft2.d	544			

WASTEWATER CHARACTERISTICS				
	PE	IW		
Q, MGD	10.5	2.5		
COD, mg/L	356	-		
TSS, mg/L	124	-		
TKN, mg/L	42	-		
NH4-N, mg/L	31	-		
NOx-N, mg/L	_	390		

PERMIT CONDITIONS				
	Current	Future		
CBOD, mg/L	20	20		
TSS, mg/L	20	20		
TN, mg/L	10	8		
NH4-N, mg/L	2	2		

EFFLUENT CHARACTERISTICS		
Daily Avg.		
CBOD, mg/L	2.2	
TSS, mg/L	5.5	
TN, mg/L	9.71	
NH4-N, mg/L	0.33	

- Effluent NO3-N, NO2-N, NH4-N, TKN, TN
- · Effluent BOD5, COD, and TSS
- MLSS concentration
- RAS concentration
- · SRT

INITIAL SIMULATIONS-PHASE 1

Goal of the initial simulations

- Determine highest removal rate of industrial waste assuming no plant modifications and
- Varying C:N ratio based from 2.6 (no external carbon addition) to 6 using methanol
- Anoxic HRT-2 hours

- Anoxic zone HRT varied from 2 hr (current WRRF) to 14.2 hrs
- Varying C:N ratio based from 2.6 (no external carbon addition) to 6 using methanol

As expected-higher the C:N ratio, lower TN concentration

- · C:N ratio of 6 produced lowest effluent TN concentration
 - Nitrification was inhibited and TN mostly NH4-N
 - Effluent COD was greater than 50 mg/L
- Higher anoxic HRT resulted in greater TN removal

• TN higher than the current permit requirement

Provided information for next stage

Phase 2 model

 Used a plug flow configuration for anoxic zone, as well as aerobic zone

 Modified to allow feeding of high nitrate waste and carbon at more than one location

- Goal-Achieve an effluent TN \leq 8 mg/L and NH4-N < 2 mg/L
 - Started with 14.2 hr anoxic HRT and an 6.1 hr aerobic HRT based on initial simulations
- Modifications included
 - Vary anoxic HRT
 - Varied industrial waste feed location
 - Single or multiple feed points
 - Varied methanol feed location
 - Single or multiple feed points

PHASE 2 RESULTS

0

		HRT 10.5	HRT 12.4	HRT 14.2	
IW Zone 1,3 COD Zone 2, 4	1	13.1	10.3	7.9	
IW Zone 1-3, COD Zone 2	2	13.6	10.8	8.2	
IW Zone 1-3, COD Zone 4	З	10.5	8.4	7.1	◄
IW Zone 1, COD Zone 2,4	4		8.9	7.2	◄
IW Zone 1, COD Zone 2	5	11.2	8.6	7.2	◄
IW Zone 1, COD Zone 4	6	11.2	8.5	7.2	
IW Zone 3, COD Zone 2,4	7	16.6	12.9	9.6	
IW Zone 3, COD Zone 2	8	16.6	13.1	9.8	Nitrate
IW Zone 3, COD Zone 4	9	16.3	12.7	9.5	Methanol

PHASE 2 RESULTS

Meets permit goal of ≤ 8 mg/L when

- 1. IW is fed entirely to Zone 1 independent of COD addition zone
- IW split between Zone
 1 and 3 and COD fed
 in Zone 4
- 3. HRT 14.2

In all cases, NH4-N concentration <0.5 mg/L

		HRT 10.5	HRT 12.4	HRT 14.2
IW Zone 1,3 COD Zone 2, 4	1	13.1	10.3	7.9
IW Zone 1-3, COD Zone 2	2	13.6	10.8	8.2
IW Zone 1-3, COD Zone 4	3	10.5	8.4	7.1
IW Zone 1, COD Zone 2,4	4		8.9	7.2
IW Zone 1, COD Zone 2	5	11.2	8.6	7.2
IW Zone 1, COD Zone 4	6	11.2	8.5	7.2
IW Zone 3, COD Zone 2,4	7	16.6	12.9	9.6
IW Zone 3, COD Zone 2	8	16.6	13.1	9.8
IW Zone 3, COD Zone 4	9	16.3	12.7	9.5

NEXT STEPS

Numerical optimization

- · Determine most optimal design based on cost and effluent quality
- Design, build, operate small pilot process for Proof of Concept
 - 5-10 liter per hour flow rate
 - Various zones to allow for anoxic and aerobic environments

Questions?

<u>Jbrown7@stevens.edu</u> <u>Dvaccari@stevens.edu</u>

