

Electrochemical Destruction of Cyanide in Water

Jose Alvarez, Ph.D., P.E. Director of Technology and Operations

jose.alvarez@aclaritywater.com

Orren Schneider, Ph.D., P.E. Chief Science Officer

orren.schneider@aclaritywater.com

Clean. Safe. Water. aclaritywater.com

Electrochemical Oxidation Background

- Studied mostly at bench scale and currently emerging into commercial applications
- Significant amount of publications
- Fits into a continuum of advanced oxidation processes

EAOPs 101 Fundamentals

Electrodes placed in water

Anode(+)/Cathode(–)

Electric potential above 1.23 V applied

 Surficial voltage at which water splits to O₂ and H₂

Mixed oxidant production with increasing voltage

Anodes with high overpotential are

Modes of Operation

Indirect oxidation

• Oxidants formed in-situ react in bulk solution (OCl-, HOOH, ClO₂, O₃, HO·, O₂-, S₂O₈²⁻)

Direct oxidation

- Adsorbed molecules react with electrons generated on surface of electrode
- Direct electron transfer reactions slower than indirect reactions and require adsorption of molecules to electrode surface

High degree of oxidation achieved

- Mineralization of organics to CO₂ and other trace gases
- Disinfection of microbes
- AOC produced by incomplete mineralization

Electrode Types

Noble metals

• Pt, Ti/Pt

Metal Oxides and Mixed Metal Oxides (MMO)

- PtO₂, PbO₂, IrO₂, TiO₂, SnO₂, RuO₂
- Substoichiometric titanium oxides

Boron Doped Diamond (BDD)

 BDD is claimed to have the largest electrochemical potential window in aqueous solutions compared to traditional electrode materials

Carbonaceous and Graphitic Materials

Carbon black, carbon fibers, carbon nanotubes, graphite

Ideal Electrode

- High oxidation potential
- Low cost
- Low energy (<0.5 kWh/gal)
- Long-lasting (years)
- Low maintenance
- Available in a variety of form factors

Electrode Material	Overpotential (V)
Aclarity	2.5+
BDD	2.2-2.6+
Ti/SnO ₂ -Sb ₂ O ₅	1.9-2.2
Ti/Pt	1.7-1.9
IrO ₂ /Ta ₂ O ₅	1.5-1.8
RuO ₂ /TiO ₂	1.4-1.7

Electrode materials

Unique profile of inherent power, low-cost anodes; pairing right cathodes increase this further

Geometry

Radial, porous shape with small band gap optimizes efficiency and speciation

Reactor flow

Flow-through path, mixing, and detention time ensure oxidants are used

Cyanide Uses and Occurrence

Widely used in industry

 Market for NaCN alone expected to be \$3B in us by 2027

Recovery of metals from mining

 Metal processing and plating from 2500 metal plating shops in US

Salt manufacturing and processing

Sodium ferrocyanide decahydrate (YPS) used as anti-caking agent

Cyanide Chemistry

Hypochlorite

$$CN^- + OCl^- \rightarrow CNCl + Cl^-$$

 $CNCl + H_2O \rightarrow OCN^- + 2H^+ + Cl^-$
 $OCN^- + H_2O + OH^- \rightarrow NH_3 + CO_3^{-2}$

Ozone

$$CN^{-} + O_{3} \rightarrow OCN^{-} + O_{2}$$

 $2OCN^{-} + 3O_{3} + H_{2}O \rightarrow 2HCO_{3}^{-} + N_{2} + 3O_{2}$

Chlorine Dioxide

$$CN^{-} + 2CIO_{2} + 2OH^{-} \rightarrow OCN^{-} + 2CIO_{2}^{-} + H_{2}O$$

 $OCN^{-} + H_{2}O + OH^{-} \rightarrow NH_{3} + CO_{3}^{-2}$

Hydrogen Peroxide

$$CN^- + H_2O_2 \rightarrow OCN^- + H_2O$$

 $OCN^- + H_2O + OH^- \rightarrow NH_3 + CO_3^{-2}$

Cyanide Bench Results

Case Study – Cyanide Destruction Road Salt Depot

- Conducted bench and on-site pilot testing
- Designed, constructed and installed system in less than 6 months (Capacity 16,000 gpd)
- Working with local POTW to accept treated water

Aclarity Skid-mounted reactors

Cyanide Destruction Economics

Existing Costs

Trucking wastewater

- •Time/labor
- Mileage/tolls
- Disposal Fees
- •\$286,000/yr

Aclarity Costs

CAPEX

- Construction of shed
- Reactor(s)/Skid(s)
- Engineering
- Installation
- •\$130,000.00

OPEX

- Power \$1,600/yr
- Disposal \$91,000/yr

ROI

•~ 7 months

Conclusions

Free cyanide readily destroyed by electrochemical generation of hypochlorite at power

Achieving <1 mg/L cyanide limit

Complexed cyanide requires higher power to create hydroxyl radicals

Reactions are pH dependent

Economics are favorable

ROI < 1 year

Acknowledgements

- Julie Bliss Mullen
- Orren Schneider, PhD, PE
- Jose Alvarez, PhD, PE
- Ray Galgano
- Liz Christ
- Mike Mcfadden

- Mike Lee
- Aibek Bekkulov
- John Wohlwerth

Questions

Thank you!

Jose Alvarez, Ph.D., P.E. Director of Technology and Operations

jose.alvarez@aclaritywater.com

Orren Schneider, Ph.D., P.E. Chief Science Officer

orren.schneider@aclaritywater.com

Clean. Safe. Water. aclaritywater.com