

Alkaline Hydrolysis of NC fines and comparative evaluation of post-hydrolysis techniques for nitrogen removal

Amalia Terracciano Research Scientist Center for Environmental Systems Hoboken, NJ

NEWEA 2022 Annual Conference Jan 23-26, Boston, MA

Co-Authors: Andrew Mai, Tsan-Liang Su, Christos Christodoulatos, Agamemnon Koutsospyros, Washington Braida and Per Arienti

Alkaline Hydrolysis (AH) of waste NC fines

<u>Outline</u>

- Kinetics of alkaline hydrolysis (AH) for degradation of NC fines (pure/waste) at bench scale
- 2. Pilot scale testing of AH-liquor
- 3. Evaluation of post-hydrolysis techniques for nitrogen removal from AH-liquor
- 4. Nitrogen removal from post-AH NC liquor with bimetals reduction
- 5. Nitrogen removal from post-AH NC liquor with conventional denitrification with BOD assessment of post-AH NC liquor

Nitrocellulose (NC) fines

- Generated through nitration of cellulose ester polymer
- Used in production of propellants, smokeless gunpowder, and some explosives¹
- Self ignition stability is directly related to degree of nitrogen purity¹
- Higher nitration more unstable
- Insoluble in water²
- Solubility in other liquids depends on nitrogen content
- Low nitrogen mixtures soluble in acetone and Ether-alcohol mixtures³
- High nitrogen mixtures soluble in acetone

1. Kim, Byung J, and Jae K Park. Comprehensive Evaluation and Development of Treatment Technologies for Nitrocellulose Fines and Process Wasterwaters. U.S. Army, 1993.

2. Weston, Roy F. Composting Nitrocellulose Fines - Hazard Analysis. Weston, Inc, 1995.

3. López-López, María, et al. "New Protocol for the Isolation of Nitrocellulose from Gunpowders: Utility in Their Identification." Talanta, Elsevier, 25 Mar. 2010.

N	С
N Content	12.6-14%
Flash point	12.8 °C
Melting and ignition	160-170 °C
Specific Gravity	1.66
m.w.	504.3

Nitrocellulose (NC) fines

Production grade NC fines [NC (p)]

NC fines from wastewater stream [NC(w)]

Distribution A: Approved for Public Release; Distribution is Unlimited

Alkaline hydrolysis (AH): kinetic study

- NC wastewater with 3% solids concentration
- AH is a resilient technique proved for degradation of NC
- AH can achieve denitration of NC while also decomposing the primary cellulose backbone

Alkaline driven mechanism for NC decomposition (Christodoulatos et al., 2001)

Bench scale testing

- Sodium Hydroxide as alkaline medium
- One flask (250 ml Erlenmeyer flasks, 100 ml reaction volume) for each sampling point sacrificed at specific time intervals

Parameter	Value
Temperature (C)	50,70,90
NaOH (%)	1,2, 3, 5, 8, 12
NC (%)	3

AH of NC(p)

AH of NC(p)

AH of NC(w)

NC:NaOH solids ratio of 1:1 will obtain 99% destruction within 30-60 min for with 90-70 °C

AH kinetic study

Kinetic model for degradation of NC fines

$$C_{NC} = C_{NC}^{0} \exp\left[\left(-2.44 \times 10^{9} (C_{NaOH}^{0})^{1.5} \exp\left(-\frac{10152}{T}\right)\right)t\right] \text{ for [NaOH]}\left[\frac{\text{gr}}{\text{L}}\right]$$

Characterization of post-AH NC liquor

- Extremely dark color
- High pH
- Inorganic nitrogen load up to 4000 mgN/L
- Organic carbon load up to 18 g/L

рН (f)	NO ₃ -N (mg/L)	NO ₂ -N (mg/L)	NO ₂ /NO ₃	COD (g/L)
13.25±0.1	1025±50	2860±50	2.8±0.1	18±5

Characterization of post-AH NC liquor

Effect of caustic strength

- Fix NCw 3%
- Fix T (90 C)

Effect of AH time

- Fix NaOH 3%
- Fix T (90 C)
- Fix NCw 3%

Alkaline hydrolysis (AH): parametric study <u>Pilot scale testing</u>

USA Lab-30FS reactor

- Condenser with collection flask
- T monitor and mix controller
- 30 L volume reactor vessel
- Working volume 10 L
- mixing speed fixed to 180±5 rpm

Testing conditions with pure NC fines

Parameter	Value
Temperature (C)	90, 70
NaOH (%)	3
NC (%)	3

AH pilot scale for NC(p) fines

Parameter	Value
Temperature (°C)	70
Time (min)	60
NC removal	99%
COD (mg/L)	19010

T=5 min T=15 min T=25 min

Parameter	Value
Temperature (°C)	90
Time (min)	30
NC removal	99%
COD (mg/L)	19500

AH pilot scale for NC fines

Nitrate and nitrite concentrations as nitrogen from bench and pilot scale tests at (a) 70 °C and (b) 90 °C

AH kinetic study

Summary

- AH is confirmed effective in degradation of targeted NC fines from wastewater
- NC: NaOH solids ratio of 1:1 at 90 °C will achieved 99% destruction within 30 min
- An equation for modeling of NC fines degradation was obtained using non linear regression and pseudo first order approximation
- Higher temperature play a significant role in enhancing kinetic rate of reaction compared to caustic strength
- Optimal conditions from bench scale tests compare well with outcomes from AH tests at larger scale

NO ₃ -N (g/L)	NO ₂ -N (g/L)	COD (g/L)
1.02±5	2.86±5	18±5

How to address nitrogen and COD in posthydrolysis liquor?

Nitrogen removal in post-AH NC liquor

- Zero valent iron (ZVI) widely used for environmental remediation
- Process enhanced by
- 1. metals with higher reduction potential (Mg)

$$\begin{array}{ll} Mg^0 \to Mg^{2+} + 2e^- & ; E^0 = -2.37 \, V \\ Fe^0 \to Fe^{2+} + 2e^- & ; E^0 = -0.44 \, V \end{array}$$

2. Bimetals contact (galvanic corrosion)

Testing Conditions:

ZvMg only

Solids to liquid (S/L) percentages ratio 1-5%

- Mg/Cu at 10:1 ratio
- Initial pH of post-AH liquor adjusted to ≤2.0

Nitrogen removal from post-AH liquor at 3% S/L

Nitrogen removal from post-AH liquor at 60-70%

COD removal from post-AH liquor at 3% S/L

Target AH liquor	Dilution AH liquor	% COD Removal	
AH-liquor from NC(p)	2X	77.5	
	4X	79.1	
AH-liquor from NC(w)	2X	83.0	

post-AH liquor before and after treatment with Mg/Cu

Heterotrophic Denitrification (HDN) of post-

Nitrogen removal in wastewater treatment plants

In anoxic environment, heterotrophic bacteria will use the oxygen from nitrates as they assimilate BOD, producing nitrogen gas.

Denitrification Reaction Sequence

HDN of post-AH NC liquor

Requirements for HDN

- Biochemical Oxygen Demand (BOD)/ to nitrous oxygen (NOx-[N]) of min 2.5-max 5
- A COD/BOD ratio ≤ 2
- 99% transformation of 3% NC solids generate about 3800 mg/L of NO_x-N
- Identify BOD/NO_x-N and COD/BOD ratios in post-hydrolysis NC liquor

NC (w) %	COD (g/L)	ΣNOx-N (g/L)	
1	6.82	1.50	
3	16.8	3.73	
6	32.1	6.09	
NC (p) %	COD (g/L)	ΣNOx-N (g/L)	
1	6.20	1.50	
3	16.2	3.73	
6	29.9	6.09	

Characterization of post-AH liquor for different NC %

BOD in post-AH NC liquor

AH of NC fines yield of 1000 mg BOD/g NC hydrolyzed

HDN of post-AH NC liquor

BOD Requirements for HDN

• Based on BOD assessment and characterization of post-AH liquor

NC (w) %	COD/BOD	BOD/ΣNOx-N	
1	5.79	0.78	
3	5.94	0.76	
6	5.65	0.93	
NC (p) %	COD/BOD	BOD/ΣNOx-N	
NC (p) % 1	COD/BOD 5.81	BOD/ΣNOx-N 0.78	
NC (p) % 1 3	COD/BOD 5.81 5.75	BOD/ΣNOx-N 0.78 0.85	

- Ratios for NC(w) do not meet the standard criteria for HDN
- In WWTP, HDN is downstream to aerobic treatments
- Addition of organic carbon to sustain HDN is common
- Methanol selected for external supply to post-AH liquor

HDN experimental set up

Winpact Evo System Controller and bioreactor

30 L reactor capacity, recirculation jacket with heating/cooling system; online DO, pH, ORP probes with online pH adjustment

Operating Parameter	Value
Temperature (C)	30
AH liquor dilution	8x
Flow (L/d)	8
Working volume (L)	15
HRT (d)	1.8
Total Influent N (mg/L)	430±10
Influent NO2-N (mg/L)	323±5
Influent NO3-N (mg/L)	107±10

HDN of post-AH liquor

Operating conditions by influent nitrogen

Phase	Influent Nitrogen progression	Time (d)
1	100% NO ³ synthetic solution	8
2	25% NO ₃ , 75% NO ₂ synthetic solution	8
3	Diluted AH liquor (8X) from NC(p)	20

Activated Sludge from local wastewater treatment plant (Bergen County Utility Authority) utilized as initial inoculum acclimated for a period of 2 weeks

HDN of post-AH NC liquor

Average performance parameters

- Avg MLVSS (g/L) 1.81±0.05
- Avg TSS/VSS ratio 0.50
- Avg COD removal 57%
- Avg N removal 60%

Phase	Influent Nitrogen progression	Time (d)	Supplied MeOH (mg/L)	Influent pH
1	100% NO ³ synthetic solution	8	1060	7.55
2	25% NO ₃ , 75% NO ₂ synthetic solution	8	765	7.60
3	Diluted AH liquor (8X) from NC(p)	20	460	8.40

HDN of post-AH NC liquor

- Inhibition of denitrifiers activity over time
- Decline of COD removal
- Gradual decline in VSS which indicate biomass loss
- Induced toxicity may derive by synergistic effect between salts accumulation and COD in post-AH liquor

Comparison of Nitrogen removal in post-AH NC liquor

Summary and conclusions

- Bimetals reduction and HDN were both effective in reducing the concentrations of nitrate and nitrite in the post-AH liquor
- Both processes required dilution of initial AH-liquor due to COD and nitrogen overload
- Reduction with bimetals (Mg/Cu) achieved higher inorganic nitrogen and COD removal (≥70%) with less dilution and faster kinetic compared to HDN (≤ 60%)
- Bimetals obtained also de-coloration of AH liquor (i.e. clear color)
- Denitrifies bacteria in HDN process showed toxicity inhibition from AH-liquor which may result in higher complications for large scale applications

Thank you for your attention!

Questions?

