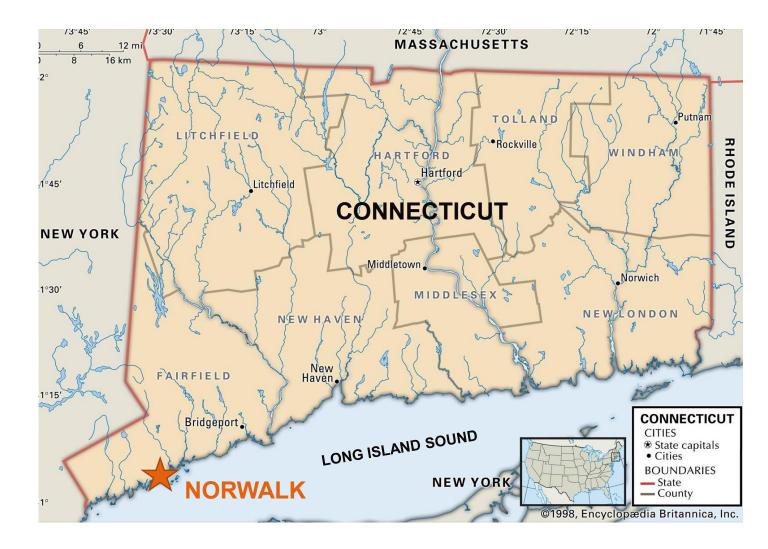


Enhanced Chlorination and Dechlorination for Wet Weather Treatment in Norwalk

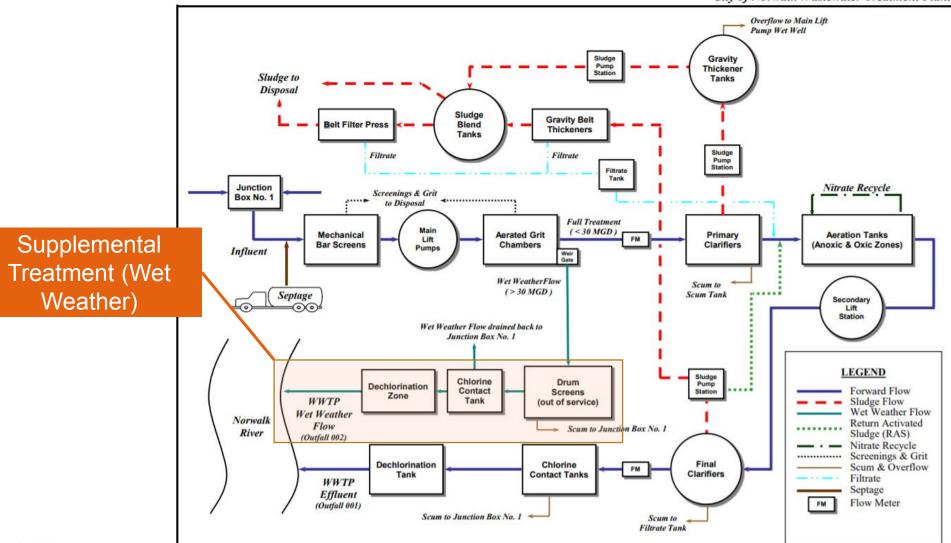

Presented by: Mary Penny

January 24, 2022

City of Norwalk

- Located along the Long Island Sound
- Approximately 40 miles northeast of NYC
- Population of ~90,000
- "Oyster Town" roots largest producer of CT oysters in the late 1800's
- High water quality a chief concern

Norwalk Water Pollution Control Authority


- Norwalk WPCA: 180 miles of sewer, 22 pumping stations, and a secondary treatment water pollution control facility (WPCF).
- WPCF:
 - Regular treatment max capacity of 30 MGD
 - Wet weather treatment capacity of 65 MGD (for 95 MGD total)
 - Discharge into Norwalk River and ultimately into Long Island Sound

3

WPCF Process Flow

City of Norwalk Wastewater Treatment Plant

Wet Weather Treatment

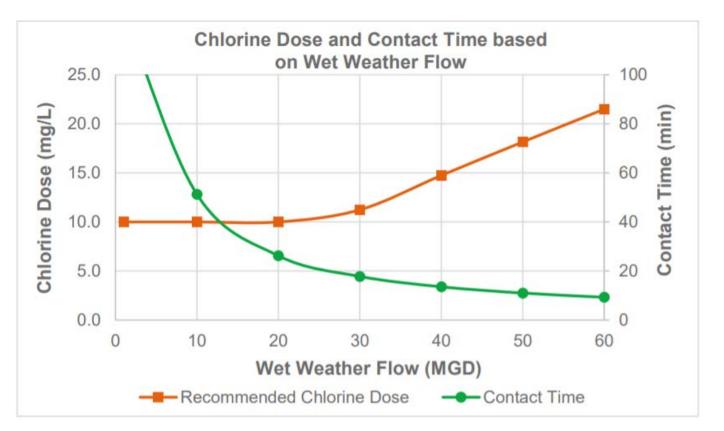
- Flows above 30 MGD are diverted to the Supplemental Treatment Building after Aerated Grit Removal
- Drum Screens (out of service)
- Gravity feed of chlorine (Sodium Hypochlorite)
- Existing contact tank (CCT 2)
- No dechlorination

Project Driver: Consent Order

- Past exceedances of CT State Water Quality Standards (SWQS) resulted in a Consent Order from the US EPA
- NPDES permit states "Combined discharges from both the regular and wet weather outfalls shall not cause violations of SWQS"
- SWQS:
 - Class SB Water Body (waters with primary and secondary contact recreation and fishing/shellfishing)
 - Max concentration of Enterococci bacteria: 500 CFU / 100 mL
 - Max concentration of chlorine residual: **13 μg/L**
- Sampling for wet weather events occurs 1 hour after initial discharge

6

Project Goals


\square	. []
\checkmark	
\checkmark	-
	— I

- Upgrade the chlorine dosing strategy and dosing/mixing equipment to achieve High Rate Disinfection
- Incorporate a dechlorination zone within existing CCT No. 2
- New dechlorination dosing strategy and dosing/mixing equipment to achieve the chlorine residual discharge limit
- On-line instrumentation to support an automated control strategy for chlor. and dechlor. dosing
- Provide influent flow measurement within CCT No. 2 for accurate chemical dosing

Dosing Goals: Hypo

- Target chlorine CT value of 200 mg/L-min (100 – 200 mg/L-min typical)
- Increase chlorine (dose) as flow increases to meet target CT (as flow ↑ contact time ↓)
- Incorporate high-rate mixing which improves the disinfection performance of chlorine
- Goal residual of 1.5 mg/L
- Using online instrumentation, provide accurate dosing as bacteria concentrations change

Dosing Goals – Bisulfite

- Dose in 1.5 : 1 ratio for Bisulfite to expected chlorine residual (1.5 mg/L)
- TR-16 recommends sizing dechlor systems to achieve residual dosing of 9 mg/L for max flows (65 MGD) – more conservative
- Needed to minimize dechlorination zone size
 - Working with existing infrastructure
 - Dechlorination reaction occurs almost instantaneously
 - TR-16 recommends 2 min contact time at average flow
- Using online instrumentation, provide accurate bisulfite dosing to minimize impacts to DO and pH

9

Pre-Project Planning

- Confirm <u>existing chemical feed tanks</u> are adequately sized for new dosing strategy (common chemical tanks)
- Confirm <u>existing tank footprint</u> can provide a dechlorination zone AND adequate chlorination contact time to achieve CT
- Confirm changes to tank would not <u>impact upstream hydraulics</u>

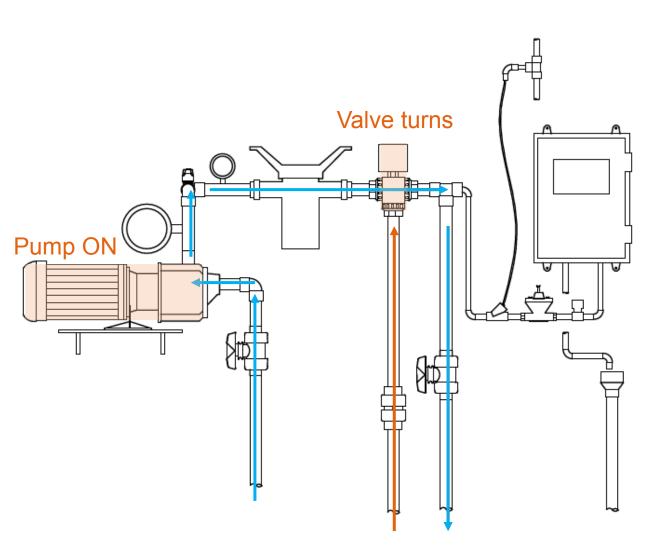
Project Specifics


- Chemical feed pumps (peristaltic style)
 - Hypo capacity: 380 gph
 - Bisulfite capacity: 50 gph
- Induction mixers
 - 20 HP for hypo
 - 15 HP for bisulfite
- 3 Sample Systems (centrifugal pump, chlorine analyzer)
 - After chlorination
 - End of chlorination zone
 - End of dechlorination zone
- Stop log weir with new radar level element
- Pre-cast baffle walls for dechlor zone
- Feedback Control Strategy

BB.

Project Specifics (cont.)

Control Strategy


Sodium Hypochlorite Feed Pump Dosage Setpoints		
Pump Automatic Pacing Setpoints:	Flow Pacing Setpoint:	
Wet Weather Flow (Q): 31.80 MgD	Selected: FT-605	
Dosage Setpoint (X): 1.50 mg/L	Influent Flow Storm Flow Average	
Chemical Concentration (D): 25.000 %	Wet Weather Flow (Q): 31.80 MGD	
Chlorine Res. Trim #1 (C1): 1.000	Pump Automatic Speed Setpoints:	
Chlorine Res. Trim #2 (C2): 1.000	Dosage Rate (Z): 7.95 GPH	
Dosage Rate (Z): 7.95 GPH	Pump Capacity: 20.00 GPH Pump Automatic Speed: 40 %	
Pump Automatic Pacing Calculation:		
Z = Q * 41,666 (X / (D * 10∧4)) * C1 * C2	Speed Command = Z / Pump Capacity	
Exit		

- Hypo pump speed paced on influent wet weather flow rate and required dose (min. 10 mg/L)
- Hypo trim variables in dosing equation to ↑/↓ as required
 - Trim 1 from Sample Location 1 (TARGET: 4.5 mg/L)
 - Trim 2 from Sample Location 2 (TARGET: 1.5 mg/L)
 - Trim values are operator adjustable
- Bisulfite pump speed paced on influent wet weather flow rate and observed chlorine residual at Sample Location 2 (goal 1.5 mg/L)
- Bisulfite will increase if chlorine is detected at Sample Location 3
- Feed pump "ramp up" to clear aged chemicals
- Equipment start/stop based on tank level

Sample System

- During dry weather, plant water is maintained to the chlorine analyzers to maintain calibration
- During storms, centrifugal pump sends sample water to chlorine analyzer
- Valve will change positions when pump turns ON
- 3-way valve controls whether plant water or sample water runs to analyzer
- Without plant water, chlorine analyzer must be "mothballed"

14

Status of Project

- Construction completed & all equipment commissioned
- Tested with 4 storms in 2021 including "Elsa" and "Ida"
 - Elsa: 5 inches of rain. Storm flow activated for 22 hours.
 - Ida: 7.5 inches of rain. Storm flow activated for 26 hours. (250-year storm)
- No bacterial nor chlorine residual exceedances
- On-going system modifications to optimize sampling system
 - Minimize pressure/flow variations to analyzer
 - Additional strainers

ARCADIS

Unique Challenges

- Intermittently operated (0-10 times per year)
 - Chlorine analyzer calibration
 - "Fully automated" system difficult to achieve
- Startup and testing challenges
- Equipment selection
 - High suction lift (sample pumps)
 - Large variations in flow (chem feed pumps)

Unique Challenges cont.

- Working with existing infrastructure CCT and Chemical Tanks
- Difficult layout for maintain equipment access (partially covered tank, space classification)
- Tank needed for storms during construction (vacate in 8 hours notice)
- "High risk" scenario for storm testing

Lessons Learned

- Operations support is critical regardless of the level of automation
- Make a plan for startup during early design phases
- Consistent flow and pressure to chlorine analyzers is key
- Adequate training and communication with operations is key to success

Acknowledgements

WPCC NORWALK

Contact Us

Mary Penny

Project Engineer

mary.penny@arcadis.com

Arcadis. Improving quality of life.

© Arcadis 2021

Thank you!

Arcadis. Improving quality of life.