

LESSONS LEARNED INSTALLING AND STARTING-UP THE COMAG PROCESS FOR LOW LEVEL PHOSPHORUS REMOVAL AT THE SOUTHINGTON CT WPCP

NEWEA Annual Conference – January 25, 2022 (Session 20)

Fred Mueller, PE Cynthia M. Castellon, PE

PLANT OVERVIEW -LIQUID TREATMENT

SOUTHINGTON WPCF

Design Capacities

- Design Average Daily Flow
- Design Peak Hourly Flow

Drivers for Upgrade

- Aging Equipment (most from early 1980s)

7.4 mgd

15.9 mgd

- Odor Control
- Phosphorus Limits
 - Seasonal April 1 through October 31
 - Interim Limit 0.7 mg/L (2013)
 - Final Limit (April 2022)
 - 7.53 lbs./day, Equivalent to
 - <0.2 mg/L at current ADF of 4.5 mgd
 - <0.12 mg/L at design ADF of 7.4 mgd

SOUTHINGTON WPCF UPGRADE

Construction

- Construction Cost of ~\$40 M
- Notice to Proceed January 2019
- Substantial Completion April 2021

Funding

- Clean Water Fund
 - 50% grant (low level phosphorus removal)
 - 30% grant (nutrient removal)
 - 20% grant (other costs)
 - Loan
- Energy Utility Rebate Incentive

EVERSURCE

PHOSPHORUS TECHNOLOGY SELECTION

-	

Facilities Plan 2014

Technologies were screened through workshops with the town using a ranking process, from several to the top three:

- Ballasted Flocculation
- Disc Filters
- Deep Bed Sand Filters

	1. State 1.
\checkmark	-1
*	-1
1	-1
1	
	_

Technology Scoring

Ballasted Flocculation scored most favorable for:

- Present Worth Cost
- Ease of Operations
- Existing Installations (at the time)
- Low Return Flow Rates
- Seasonal Shutdown Flexibility

Redundancy

For Seasonal System

- Two Full Duty Trains,
- Other installations visited had 1 train of reactors and 2 trains of clarifiers

PRE-PROCUREMENT

Public Bidding

- Request for Proposals: December 2015
- Bid Opening: January 2016
- Notice of Award: March 2016

BIDDER VALIDATION TEST - GOALS

Prove System Performance Guarantee

- Effluent P
- Loading Rates

Prove System O&M Guarantees

- PACL Usage
- Alum Usage
- Ferric Chloride Usage
- Energy Usage

• Will Soluble Non-Reactive Phosphorus (SNRP) interfere with performance?

BIDDER VALIDATION TEST – LESSONS LEARNED

Chemical Performance

- PACL Did not perform (High X usage)
- Alum and Ferric did perform
- Re-evaluated Bids CoMag still first choice

Design Plan – Chemical Feed

- Design for any Chemical
 - Future Aluminum limits?
 - Corrosivity of Ferric drove material selection
- Multi-point (PACL same as temporary system)
- CoMag (likely Alum Owner's preference)

SOLUBLE NON-REACTIVE PHOSPHORUS (SNRP)

- SNRP = Soluble Total P - Soluble Ortho-P

- Concerns

- Cannot be removed via treatment
- Interim systems would for no apparent reason struggle to meet 0.7 mg/L for a week or two each summer (unknown reasons) –Was this due to SNRP?

- Solutions:

- Build "Allowance" in Design Criteria

- Lessons Learned:

 SNRP Not a factor in Jar Tests (winter),
 Pilot (early summer) or Startup (2021 Season)

LESSONS LEARNED - DESIGN

Denite Filters

• Plan:

- Gravity from
 Upflow Denite
 Filters to CoMag
 (and relocated UV)
- 15.9 MGD "Denite Pump Station & Filters Work Great"

• Learned:

- Filters were only passing 10-12 MGD
- At High Flows Operators shutting down & bypassing (to old UV)

Solution:

- Get IDI/Suez Mfg Onsite re-train (new) operators (12-14 MGD)
- Add a bypass around filters (to get >16 MGD)
- Denite PLC Code Improvements (over 6+ years)

LESSONS LEARNED: CONSTRUCTION

LESSON LEARNED: CONSTRUCTION

Schedule

- CoMag Bid Jan 2016
- Construction Start Jan 2019
- First CoMag Submittal July 2019

Surprise – Pump Design Change

- Changed pumping design from 10% to 5% of plant's ADF
 - Act Fast Pipe being laid soon!

Impacts

- Lower Flows means Smaller Pipe Sizes to suspend solids.
- Revisit Pump Sizing & HP

LESSONS LEARNED: START-UP

• Plan:

- Break-in-period required before performance testing CoMag
 - Troubleshoot equipment
 - Stabilize chemicals (magnetite levels, multipoint dosing)
 - Operator learning curve

Issue - Nitrification Reactor Upset

- Loss of solids in nitrification reactors
- Drain valve left open unintended wasting
- Delayed Testing for 1 month

LESSONS LEARNED: START-UP

 Issue - Denite Pump Station & Filters

- Effluent Flow oscillations
 - 18 min. cycle
 - +/- 50% variation (e.g., 3-9
 MGD)
- Not trended in Denite SCADA system
- New information:
 - Visible at CoMag weirs
 - New effluent flow meter

- Ruled out surging air in inverted siphon feed pipe
- Required PLC modifications

LESSONS LEARNED: START-UP

Issue – Siphon Effect

- Pipe returning solids to reaction tanks had an 18-foot drop
- Pump design had to assume no siphon effect – free fall in 4" drop pipe.
- Pump startup demonstrated siphon effect was maintained over wide range of flows – reducing energy costs

Return Sludge Piping above

PERFORMANCE TESTING GOALS

Meet Effluent Requirements

- TP < 0.1 mg/L (with O&M guarantees)
- TP < 0.05 mg/L (potential future limit)

Meet O&M guaranteed values

- Chemical (Only Alum Tested)
- Energy
- Magnetite, plant water consumption, & waste solids flow

Parameter	Unit	Target Value		
Average, 48% solution alum dosage	ppmvp	60		
Average polymer dosage	ppmvp	2.6		
Power Consumption	kWh/d	861		
Average magnetite (ballast) usage	lb/d	45		

Operations and Maintenance Guarantee

PERFORMANCE TESTING

Performance Testing Plan

- 28-day test
- Four full-scale operating conditions

Process Adjustments

- Coagulant, magnetite, polymer
- Flow split to parallel trains (1 or 2 online)

Effluent Requirements

– TSS, Turbidity, Total Phosphorus, pH

PERFORMANCE TESTING

Overall Results

- Two sets of effluent performance requirements Met
 - All 4 conditions
 - All Criteria (TP, TSS, Turbidity)
- O&M Guaranteed Values Met
 - Treating to TP<0.1 mg/L
 - Power, chemical, plant water use, magnetite

Notes

- Some data was not considered (process upsets)
- Process responded quickly to upsets (polymer shut-downs)
- Return Sludge Pumping Typically ran @ 2-3% of Plant ADF (energy usage well below guarantee)

IMPACT ON PLANT OPERATIONS

Performance Test Results Effluent Total Phosphorus (mg/L)

IMPACT ON PLANT OPERATIONS

PARAMETER	CHANGE 2019→ 2021	NOTES
Plant Flow	5.32 mgd → 4.68 mgd	Drier year
Plant Influent TP	147 lbs./day → 116 lbs./day	Lower loads
Effluent TP	25 lbs./day \rightarrow 3 lbs./day	88% reduction
Effluent TSS	126 lbs./day → 99 lbs./day	22% reduction
PAC Usage (multi-point)	169 gpd → 73 gpd	57% reduction
Alum Usage (tertiary)	0 gpd → 410 gpd	New
Effluent Aluminum	0.11 mg/L → 0.22 mg/L	105% increase

IMPACT ON PLANT OPERATIONS

• Effluent Quality

- Meeting New Permit – 1 year ahead of schedule!

Process

- Process was robust and reliable
- Process adjustment reach steady state quickly (~ 1-Hr)

Up Ahead for 2022 Season

- Continue process optimization with Evoqua
 - Minor Controls improvements
 - Minimize solids carry over from clarifiers to effluent
 - Causing added maintenance
 - Chemistry (Chemical, magnetite)?
 - Other options?

ACKNOWLEDGMENTS

Tighe & Bond

Steve Seigal Chris Bone Amy Sowitcky

Southington Town & WPCF

Keith HaydenJames GrapponeKiari WilliamsKeith LangstonSteve GregoryChristina Stevens

CT DEEP Steve Muollo

QUESTIONS?

Cynthia M. Castellon, PE cmcastellon@tighebond.com

Fred A. Mueller, PE famueller@tighebond.com

QUIZ QUESTIONS (TRUE / FALSE)

- Jar testing was a good prediction of using PACL for low level phosphorus removal ?
 - False Even though the town wanted to use PACL, field testing showed it was not an option
- The volume of chemicals used decreased after CoMag was started up?
 - False PACL usage was reduced by 100 gpd but alum usage increased from 0 to ~400 gpd.

