

NEWEA Annual Conference and Exhibit | January 2022

Quantifying the Accuracy of Various Rainfall Spatial Interpolation Techniques

Matt Davis, P.E.

How to estimate rainfall at an ungauged location?

How to estimate rainfall over a geographic area (like a sewershed)?

Good rainfall data maximizes return on capital investments

Tipping bucket rain gauge

Evaluation four rainfall estimation techniques

Nearest neighbor

"Pure" Spatial Interpolation:

Examples of "Pure" Spatial Interpolation

Gauge Adjusted Radar Rainfall Data uses NEXRAD Reflectivity Data to Assist with Interpolation

Rainfall Intensity can be estimated from Reflectivity

Marshall Palmer Equation $Z=aR^b$

Z: rainfall intensity (mm/h) R: reflectivity (mm⁶/mm³)

a, b: coefficients

Typical values: a = 200 b = 1.6

- Rainfall calculated using Marshall Palmer Equation is called 'Unadjusted' rainfall
- Woonsocket Tauntor

8:30PM EDT 30-0CT 12

- Unadjusted rainfall provides good estimate of relative rainfall, but absolute estimate can be inaccurate
- 'Unadjusted' Rainfall data is 'Adjusted' using rain gauge data (various approaches available)

Haverhill

GARR Data combines the strengths of Radar and Ground-Based Rain Gauges

	Radar	Ground-Based Rain Gauges
Spatial Coverage	Excellent	Poor (point-based)
Accuracy of Rainfall Estimates	Poor	Excellent

How Accurate are these Spatial Interpolation Methods?

- Nearest neighbor
- Inverse distance weighting
- Ordinary kriging
- Gauge adjusted radar rainfall

How to evaluate accuracy of interpolation methods?

(Problem: We don't know the actual value at this location) Interpolated rain -Rain gauge

Leave-One-Out Cross-Validation

Leave-One-Out Cross-Validation

Now have error estimate at two points in space

Leave-One-Out Cross-Validation

Accuracy of Rainfall Estimation Techniques

Table 5-1. Rainfall Estimation Results				
Rain	Error ¹			
Event ID	NN	IDW	OK	GARR
1	14.9%	13.9%	21.3%	11.8%
2	34.2%	25.0%	30.3%	16.7%
3	20.0%	19.1%	21.2%	15.9%
4	13.3%	10.3%	11.0%	9.2%
5	15.9%	12.6%	12.0%	11.6%
6	22.9%	20.0%	21.0%	13.8%
7	12.4%	10.8%	9.7%	10.0%
Average	19.1%	15.9%	18.1%	12.7%
Range	12.4%-34.2%	10.3%-25.0%	9.7%-30.3%	9.2%-16.7%

Notes:

¹ Average of the absolute errors from the leave-one-out cross validation.

Relationships between Accuracy and Distance to Nearby Rain Gauges

Level of Effort

Rainfall Estimation Technique	Approximate Time for Generate Hyetographs for Each Rainfall Event
Nearest Neighbor	1.5 minutes
Inverse Distance Weighting	1.5 minutes
Ordinary Kriging	5 hours
Gauge Adjusted Radar Rainfall	2 hours

How to get GARR data?

- Write Your Own Code with Python libraries
 - **Pyart** Library for working with NEXRAD data
 - wradlib Library for calibrating gauge rainfall and NEXRAD reflectivity data
 - nexradaws Library for downloading NEXRAD data from Amazon web service
- Software
 - CALAMAR (RHEA SAS KISTERS Group)
 - InfoWorks ICM (Innovyze)
 - PCSWMM (CHI)
- Service providers
 - Vieux and Associates
 - One Rain

Thank you. Questions?

Matthew Davis, P.E. Andover, MA <u>mdavis@brwncald.com</u> 978-983-2036

